Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. WONG KAH YIN, NUR ELIA NADHIRA MOHD ASMADI, SUHAIZAN LOB, NURUL FAZIHA IBRAHIM
    MyJurnal
    Many chilli producers in Malaysia are facing a huge problem of anthracnose disease that infect the chilli fruits either at pre- or post-harvest stage. Due to this infection, the chilli fruits become rotten and could be colonized by grey conidial masses which is unfit for human consumption and cannot be sold. This study was aimed to isolate the fungal species associated with anthracnose symptoms collected from several mini-markets near Gong Badak, Terengganu. Pathogenicity test was conducted for all these isolates to evaluate their pathogenic level. Based on the results, five fungal isolates were successfully isolated and morphologically identified as Colletotrichum spp. All these isolates were labelled as UMTT46C, UMTT48C, UMTT50C, UMTT52C and UMTT54C. From these, fungal isolate (UMTT54C) showed the highest pathogenic level with disease severity (DS), 68.9%. Other Colletotrichum spp. recorded percentage of DS ranged from 53.3% to 60%. Identification of fungal isolates and their pathogenic level from the infected chilli is very important to assist in control strategy which can further provide a good protection measure for many chilli producers.
    Matched MeSH terms: Colletotrichum
  2. Intan Sakinah MA, Suzianti IV, Latiffah Z
    Genet. Mol. Res., 2014;13(2):3627-37.
    PMID: 24854442 DOI: 10.4238/2014.May.9.5
    Anthracnose caused by Colletotrichum species is a common postharvest disease of banana fruit. We investigated and identified Colletotrichum species associated with anthracnose in several local banana cultivars based on morphological characteristics and sequencing of ITS regions and of the β-tubulin gene. Thirty-eight Colletotrichum isolates were encountered in anthracnose lesions of five local banana cultivars, 'berangan', 'mas', 'awak', 'rastali', and 'nangka'. Based on morphological characteristics, 32 isolates were identified as Colletotrichum gloeosporioides and 6 isolates as C. musae. C. gloeosporioides isolates were divided into two morphotypes, with differences in colony color, shape of the conidia and growth rate. Based on ITS regions and β-tubulin sequences, 35 of the isolates were identified as C. gloeosporioides and only 3 isolates as C. musae; the percentage of similarity from BLAST ranged from 95-100% for ITS regions and 97-100% for β-tubulin. C. gloeosporioides isolates were more prevalent compared to C. musae. This is the first record of C. gloeosporioides associated with banana anthracnose in Malaysia. In a phylogenetic analysis of the combined dataset of ITS regions and β-tubulin using a maximum likelihood method, C. gloeosporioides and C. musae isolates were clearly separated into two groups. We concluded that C. gloeosporioides and C. musae isolates are associated with anthracnose in the local banana cultivars and that C. gloeosporioides is more prevalent than C. musae.
    Matched MeSH terms: Colletotrichum/genetics*; Colletotrichum/pathogenicity
  3. Priyatno TP, Abu Bakar FD, Kamaruddin N, Mahadi NM, Abdul Murad AM
    ScientificWorldJournal, 2012;2012:545784.
    PMID: 22666136 DOI: 10.1100/2012/545784
    The cyclic AMP- (cAMP-) dependent protein kinase A signaling pathway is one of the major signaling pathways responsible for regulation of the morphogenesis and pathogenesis of several pathogenic fungi. To evaluate the role of this pathway in the plant pathogenic fungus, Colletotrichum gloeosporioides, the gene encoding the catalytic subunit of cAMP-dependent protein kinase A, CgPKAC, was cloned, inactivated, and the mutant was analyzed. Analysis of the Cgpkac mutant generated via gene replacement showed that the mutants were able to form appressoria; however, their formation was delayed compared to the wild type. In addition, the mutant conidia underwent bipolar germination after appressoria formation, but no appressoria were generated from the second germ tube. The mutants also showed reduced ability to adhere to a hydrophobic surface and to degrade lipids localized in the appressoria. Based on the number of lesions produced during a pathogenicity test, the mutant's ability to cause disease in healthy mango fruits was reduced, which may be due to failure to penetrate into the fruit. These findings indicate that cAMP-dependent protein kinase A has an important role in regulating morphogenesis and is required for pathogenicity of C. gloeosporioides.
    Matched MeSH terms: Colletotrichum/enzymology; Colletotrichum/pathogenicity*
  4. Ali A, Wee Pheng T, Mustafa MA
    J Appl Microbiol, 2015 Jun;118(6):1456-64.
    PMID: 25727701 DOI: 10.1111/jam.12782
    To evaluate the potential use of lemongrass essential oil vapour as an alternative for synthetic fungicides in controlling anthracnose of papaya.
    Matched MeSH terms: Colletotrichum/drug effects*; Colletotrichum/growth & development
  5. Zahid N, Ali A, Manickam S, Siddiqui Y, Maqbool M
    J Appl Microbiol, 2012 Oct;113(4):925-39.
    PMID: 22805053 DOI: 10.1111/j.1365-2672.2012.05398.x
    To investigate the antifungal activity of conventional chitosan and chitosan-loaded nanoemulsions against anthracnose caused by Colletotrichum spp. isolated from different tropical fruits.
    Matched MeSH terms: Colletotrichum/drug effects*; Colletotrichum/growth & development
  6. NUR ELIA NADHIRA MOHD ASMADI, WONG KAH YIN, NUR HADINA SALEH, NURUL FAZIHA IBRAHIM, SUHAIZAN LOB
    MyJurnal
    Black spot disease is a significant worldwide disease on the rose plant. Due to this infection, the leaves become yellow and eventually fall off. The occurrence of this disease has become a major problem, especially in landscape purpose. Therefore, this research was conducted to isolate fungal species from black spot disease in rose and identify using morphological characteristics. Then, all the isolates were tested for pathogenicity to confirm Koch’s postulates. In this study, four fungal isolates have been successfully isolated from black spot disease in rose namely Rhizoctonia sp. (one isolate), Colletotrichum sp. (two isolates) and Penicillium sp. (one isolate). Based on pathogenicity test result using potato dextrose agar (PDA) plug technique, fungus UMTT27R (Penicillium sp.) showed highly pathogenic on rose’s leaves with disease severity (DS) = 88.89% followed by UMTT13R (Colletotrichum sp.) with DS=72.22%, UMTT21R (Colletotrichum sp.) with DS=66.67% and UMTT4R (Rhizoctonia sp.) with DS=61.11%. Correct identification of fungal pathogens is very important to strategize a proper method to control the black spot disease in rose cultivation. 
    Matched MeSH terms: Colletotrichum
  7. Muslim A, Hyakumachi M, Kageyama K, Suwandi S
    Trop Life Sci Res, 2019 Jan;30(1):109-122.
    PMID: 30847036 DOI: 10.21315/tlsr2019.30.1.7
    Treatment with hypovirulent binucleate Rhizoctonia (HBNR) isolates induced systemic resistance against anthracnose infected by Colletotrichum orbiculare in cucumber, as there were no direct interaction between HBNR and C. orbiculare. This is because of the different distances between HBNR and C. orbiculare, where the root was treated with HBNR isolate and C. orbiculare was challenged and inoculated in leaves or first true leaves were treated with HBNR isolate and C. orbiculare was challenged and inoculated in second true leaves. The use of barley grain inocula and culture filtrates of HBNR significantly reduced the lesion diameter compared to the control (p = 0.05). The total lesion diameter reduction by applying barley grain inoculum of HBNR L2, W1, W7, and Rhv7 was 28%, 44%, 39%, and 40%, respectively. Similar results was also observed in treatment using culture filtrate, and the reduction of total lesion diameter by culture filtrate of HBNR L2, W1, W7, and Rhv7 was 45%, 46%, 42%, and 48%, respectively. When cucumber root was treated with culture filtrates of HBNR, the lignin was enhanced at the pathogen penetration, which is spread along the epidermis tissue of cucumber hypocotyls. Peroxidase activity in hypocotyls in the treated cucumber plant with culture filtrates of HBNR significantly increased before and after inoculation of pathogens as compared to the control. Significant enhancement was also observed in the fast-moving anodic peroxidase isozymes in the treated plants with culture filtrates of HBNR. The results showed the elicitor(s) contained in culture filtrates in HBNR. The lignin deposition as well as the peroxidase activity is an important step to prevent systemically immunised plants from pathogen infection.
    Matched MeSH terms: Colletotrichum
  8. Shahbazi P, Md Yusoff Musa, Tan AGY, Farhat Ahmadi Avin, Teo AWF, Sabaratnam V
    Sains Malaysiana, 2014;43:697-705.
    The isolation of 66 streptomycetes from rhizosphere soil of chili plants was done for their inhibitory activities against three different dominant species of Colletotrichum namely C. acutatum, C. gloeosporioides and C. capsici. Twenty one streptomycetes strains were active against at least one of the Colletotrichum species. In addition, ten strains that inhibited the in vitro growth of Colletotrichum species showed chitinase activity. Strain P42, which displayed the highest inhibitory activity against all three anthracnose fungi species and high chitinase activity was tested as biological control agent in a greenhouse study. The strain successfully controlled chili anthracnose disease by significantly reducing the disease severity. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain P42 belongs to the Streptomyces rochei clade. The results of the current study showed that rhizosphere-derived soil of chili plants is an important source of bioactive streptomycetes which are antagonistic against Colletotrichum.
    Matched MeSH terms: Colletotrichum
  9. Ridzuan R, Rafii MY, Ismail SI, Mohammad Yusoff M, Miah G, Usman M
    Int J Mol Sci, 2018 Oct 11;19(10).
    PMID: 30314374 DOI: 10.3390/ijms19103122
    Chili anthracnose is one of the most devastating fungal diseases affecting the quality and yield production of chili. The aim of this review is to summarize the current knowledge concerning the chili anthracnose disease, as well as to explore the use of marker-assisted breeding programs aimed at improving anthracnose disease resistance in this species. This disease is caused by the Colletotrichum species complex, and there have been ongoing screening methods of chili pepper genotypes with resistance to anthracnose in the field, as well as in laboratories. Conventional breeding involves phenotypic selection in the field, and it is more time-consuming compared to molecular breeding. The use of marker-assisted selection (MAS) on the basis of inheritance, the segregation ratio of resistance to susceptibility, and the gene-controlling resistance may contribute to the development of an improved chili variety and speed up the selection process, while also reducing genetic drag in the segregating population. More importantly, by using molecular markers, the linkage groups are determined dominantly and co-dominantly, meaning that the implementation of a reliable method to produce resistant varieties is crucial in future breeding programs. This updated information will offer a supportive direction for chili breeders to develop an anthracnose-resistant chili variety.
    Matched MeSH terms: Colletotrichum*
  10. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: Colletotrichum/growth & development*; Colletotrichum/pathogenicity*
  11. Ayob FW, Simarani K
    Saudi Pharm J, 2016 May;24(3):273-8.
    PMID: 27275114 DOI: 10.1016/j.jsps.2016.04.019
    This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS), these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Microscope. The hydrolytic enzyme test showed that all strains were positive in secreting cellulase. Colletotrichum sp. and F. solani strains also gave a positive result for amylase while only F. solani was capable to secrete protease. These fungi were putatively classified as endophytic fungi since they produced extracellular enzymes that allow them to penetrate plant cell walls and colonize with symbiotic properties.
    Matched MeSH terms: Colletotrichum
  12. Mahmodi F, Kadir JB, Puteh A, Pourdad SS, Nasehi A, Soleimani N
    Plant Pathol J, 2014 Mar;30(1):10-24.
    PMID: 25288981 DOI: 10.5423/PPJ.OA.05.2013.0054
    Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5-19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers.
    Matched MeSH terms: Colletotrichum
  13. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Puteh A, Soleimani N
    Plant Dis, 2013 Jun;97(6):841.
    PMID: 30722625 DOI: 10.1094/PDIS-10-12-0944-PDN
    Soybean (Glycine max L.) is one of the most economically important crops in the world, and anthracnose is known to infect soybean in most countries. Colletotrichum truncatum is the common pathogen causing anthracnose of soybean. However, at least five species of Colletotrichum have been reported on soybean worldwide (2). In July 2010, anthracnose symptoms were observed on soybean in the experimental fields of the agriculture station in Ladang Dua, University Putra Malaysia located in Selangor state of Malaysia. Symptoms were initially observed on a few plants randomly within one field, but after 4 weeks, the disease was found in two additional fields scattered across an area of 1 km2. Pinkish-brown lesions were observed on the pods, and the formation of dark lesions on the leaves and stems was sometimes followed by stem girdling, dieback, and distorted growth. At later stages, numerous epidermal acervuli developed in the lesions, and mucilaginous conidial masses appeared during periods of high relative humidity. Conidia produced in acervuli were straight, cylindric, hyaline, and aseptate, with both ends rounded. Conidia measured (mean ± SD) 14.2 ± 0.6 × 3.6 ± 0.7 μm, and the L/W ratio was 3.95 μm. Six isolates of the fungus were obtained and identified as C. gloeosporioides on the basis of morphological characterization (3). The isolates were deposited in the University Putra of Malaysia Culture Collection (UPMCC). PDA cultures were white at first and subsequently became grayish to pink to reddish-brown. Amplification and sequence analysis of coding and none-coding regions of the ITS-rDNA (GenBank JX669450), actin (JX827430), β-tubulin (JX827454), histone (JX827448), chitin synthase (JX827436), and glyceraldehyde-3-phosphate dehydrogenase (JX827442) obtained from the representative isolate, CGM50, aligned with deposited sequences from GenBank and revealed 99 to 100% sequence identity with C. gloeosporioides strains (JX258757, JX009790, GQ849434, HM575301, JQ005413, and JX00948 from GenBank). One representative isolate, CGM50, was used for pathogenicity testing. Four non-infected detached leaves and pods of 24-day-old G. max var. Palmetto were surface-sterilized and inoculated by placing 10 μl of a conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method (4), with 10 μl distilled water as a negative control. Leaves and pods were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, the development of typical field symptoms, including acervuli formation, occurred on the leaves and pods of inoculated plants, but not on the negative controls. A fungus with the same colony and conidial morphology as CGM50 was recovered from the lesions on the inoculated leaves and pods. Anthracnose caused by C. gloeosporioides on soybean plants has been reported previously in different countries, but not in Malaysia (3). Geographically, the climate of Malaysia is highly conducive to maintain and cause outbreaks of anthracnose all year round; thus, the development of management recommendations will be inevitable for anthracnose control. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on soybean in Malaysia. References: (1) U. Damm et al. Fungal Diversity 39:45, 2009. (2) S. L. Chen et al. J. Phytopathol. 154:654, 2006. (3) B. C. Sutton. The Genus Glomerella and its Anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008. ERRATUM: A correction was made to this Disease Note on May 19, 2014. The author N. Soleimani was added.
    Matched MeSH terms: Colletotrichum
  14. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Soleimani N, Puteh A
    Plant Dis, 2013 May;97(5):687.
    PMID: 30722185 DOI: 10.1094/PDIS-09-12-0843-PDN
    Bok choy (Brassica chinensis L.) is a temperate vegetable grown in the cool highland areas of Malaysia. In June 2010, vegetable growing areas of the Cameron Highlands, located in Pahang State, Malaysia, were surveyed for the prevalence of anthracnose disease caused by Colletotrichum species. Diseased samples were randomly collected from 12 infested fields. Anthracnose incidence on bok choy varied from 8 to 36% in different nursery fields. Disease symptoms initially appeared as small water-soaked spots scattered on the leaf petioles of young plants. As these spots increased in size, they developed irregular round spots that turned to sunken grayish brown lesions surrounded by brownish borders. When the lesions were numerous, leaves collapsed. Pale buff to salmon conidial mass and acervuli were observed on well-developed lesions. The acervuli diameter varied in size from 198 to 486 μm, averaging 278.5 μm. Morphological and cultural characteristics of the fungus were examined on potato dextrose agar incubated for 7 days at 25 ± 2°C under constant fluorescent light. Vegetative mycelia were hyaline, septate, branched, and 2 to 7 μm in diameter. The color of the fungal colonies was grayish brown. Conidia were hyaline, aseptate, falcate, apices acute, and 21.8 to 28.5 × 2.6 to 3.4 mm. Setae were pale brown to dark brown, 75 to 155 μm long, base cylindrical, and tapering towards the acute tip. Appressoria were solitary or in dense groups, light to dark brown, entire edge to lobed, roundish to clavate, 6.5 to 14 × 5.8 to 8.6 μm, averaging 9.2 × 6.8 μm, and had a L/W ratio of 1.35. Based on the keys outlined by Mordue 1971 (2) and Sutton 1980 (3), the characteristics of this fungus corresponded to Colletotrichum capsici. Sequence analysis of the ITS-rDNA obtained from the Malaysian strain CCM3 (GenBank Accession No. JQ685746) using primers ITS5 and ITS4 (1) when aligned with deposited sequences from GenBank revealed 99 to 100% sequence identity with C. capsici strains (DQ286158, JQ685754, DQ286156, GQ936210, and GQ369594). A representative strain CCM3 was used for pathogenicity testing. Four non-infected detached leaves of 2-week-old B. chinensis were surface-sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method, and distilled water was used as a control (1). Leaves were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, typical anthracnose symptoms with acervuli formation appeared on the surface of tissues inoculated with the spore suspension, but not on the water controls. A fungus with the characteristics of C. capsici was recovered from the lesions on the inoculated leaves. Anthracnose caused by C. capsici has been reported on different vegetable crops, but not on bok choy (3). To the best of our knowledge, this is the first report of C. capsici causing anthracnose on bok choy in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) J. E. M. Mordue. CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycol. Inst., Kew, UK. 1971. (3) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008.
    Matched MeSH terms: Colletotrichum
  15. Zakaria L, Yee TL, Zakaria M, Salleh B
    Trop Life Sci Res, 2011 May;22(1):71-80.
    PMID: 24575210 MyJurnal
    A total of 82 isolates of microfungi were isolated from 6 sandy soil samples collected from Teluk Aling beach, Pulau Pinang. The soil microfungi were isolated by using direct isolation, debris isolation and soil dilution techniques. Based on morphological characteristics, seven genera of microfungi were identified namely, Fusarium (42%), Aspergillus (24%), Trichoderma (13%), Curvularia (9%), Colletotrichum (6%), Helminthosporium (4%) and Penicillium (2%). The most common species isolated was Fusarium solani followed by Fusarium semitecum, Aspergillus niger, Trichoderma viride, Curvularia clavata, Curvularia lunata, Helminthosporium velutinum, Colletotrichum sp. and Penicillium chrysogenum. From the present study, it appears that the sandy beach contains a microfungi reservoir comprising of a variety of genera which contributes significantly to the ecological functioning of a marine ecosystem.
    Matched MeSH terms: Colletotrichum
  16. Nur Baiti Abd Murad, Nur Ain Izzati Mohd Zainudin
    MyJurnal
    Fruit rot is a common disease that affects the quality and quantity of the produced fruits. It may happened during pre-harvest stage and usually the condition of the fruits will become worse at postharvest stage if there are no any precautions taken during the picking, storing, packaging and transporting processes. The disease is mainly caused by the infection of fungi supported by a conducive condition like susceptible hosts, relative humidity and unsuitable temperature, besides other microorganisms such as bacteria, viruses and nematodes. The infection may arise from soilborne, waterborne, windborne and insects bite transmission. Fruit rot diseases have been reported to cause by many fungal species such as Fusarium species, Alternaria species, Lasiodiplodia species, Aspergillus species, Penicillium species, Colletotrichum species and Botrytis species. This review will provide sufficient information about rot diseases on fruit, fungal species that cause the diseases, effective control methods and managements as well as economic losses and health issues related to the diseases.
    Matched MeSH terms: Colletotrichum
  17. Ma WJ, Yang X, Wang XR, Zeng YS, Liao MD, Chen CJ, et al.
    Plant Dis, 2014 Jul;98(7):991.
    PMID: 30708879 DOI: 10.1094/PDIS-06-13-0609-PDN
    Hylocereus undatus widely grows in southern China. Some varieties are planted for their fruits, known as dragon fruits or Pitaya, while some varieties for their flowers known as Bawanghua. Fresh or dried flowers of Bawanghua are used as routine Chinese medicinal food. Since 2008, a serious anthracnose disease has led to great losses on Bawanghua flower production farms in the Baiyun district of Guangzhou city in China. Anthracnose symptoms on young stems of Bawanghua are reddish-brown, sunken lesions with pink masses of spores in the center. The lesions expand rapidly in the field or in storage, and may coalesce in the warm and wet environment in spring and summer in Guangzhou. Fewer flowers develop on infected stems than on healthy ones. The fungus overwinters in infected debris in the soil. The disease caused a loss of up to 50% on Bawanghua. Putative pathogenic fungi with whitish-orange colonies were isolated from a small piece of tissue (3 × 3 mm) cut from a lesion margin and cultured on potato dextrose agar in a growth chamber at 25°C, 80% RH. Dark colonies with acervuli bearing pinkish conidial masses formed 14 days later. Single celled conidia were 11 to 18 × 4 to 6 μm. Based on these morphological characteristics, the fungi were identified as Colletotrichum gloeosporioides (Penz.) Penz. & Sacc (2). To confirm this, DNA was extracted from isolate BWH1 and multilocus analyses were completed with DNA sequence data generated from partial ITS region of nrDNA, actin (ACT) and glutamine synthetase (GS) nucleotide sequences by PCR, with C. gloeosporioides specific primers as ITS4 (5'-TCCTCCGCTTATTGATATGC-3') / CgInt (5'-GGCCTCCCGCCTCCGGGCGG-3'), GS-F (5'-ATGGCCGAGTACATCTGG-3') / GS-R (5'-GAACCGTCGAAGTTCCAC-3') and actin-R (5'-ATGTGCAAGGCCGGTTTCGC-3') / actin-F (5'-TACGAGTCCTTCTGGCCCAT-3'). The sequence alignment results indicated that the obtained partial ITS sequence of 468 bp (GenBank Accession No. KF051997), actin sequence of 282 bp (KF712382), and GS sequence of 1,021 bp (KF719176) are 99%, 96%, and 95% identical to JQ676185.1 for partial ITS, FJ907430 for ACT, and FJ972589 for GS of C. gloeosporioides previously deposited, respectively. For testing its pathogenicity, 20 μl of conidia suspension (1 × 106 conidia/ml) using sterile distilled water (SDW) was inoculated into artificial wounds on six healthy young stems of Bawanghua using sterile fine-syringe needle. Meanwhile, 20 μl of SDW was inoculated on six healthy stems as a control. The inoculated stems were kept at 25°C, about 90% relative humidity. Three independent experiments were carried out. Reddish-brown lesions formed after 10 days, on 100% stems (18 in total) inoculated by C. gloeosporioides, while no lesion formed on any control. The pathogen was successfully re-isolated from the inoculated stem lesions on Bawanghua. Thus, Koch's postulates were fulfilled. Colletotrichum anthracnose has been reported on Pitaya in Japan (3), Malaysia (1) and in Brazil (4). To our knowledge, this is the first report of anthracnose disease caused by C. gloeosporioides on young stems of Bawanghua (H. undatus) in China. References: (1) M. Masyahit et al. Am. J. Appl. Sci. 6:902, 2009. (2) B. C. Sutton. Page 402 in: Colletotrichum Biology, Pathology and Control. J. A. Bailey and M. J. Jeger, eds. CAB International, Wallingford, UK, 1992. (3) S. Taba et al. Jpn. J. Phytopathol. 72:25, 2006. (4) L. M. Takahashi et al. Australas. Plant Dis. Notes 3:96, 2008.
    Matched MeSH terms: Colletotrichum
  18. Mahmodi F, Kadir JB, Nasehi A, Puteh A, Soleimani N
    Plant Dis, 2013 Nov;97(11):1507.
    PMID: 30708462 DOI: 10.1094/PDIS-03-13-0231-PDN
    At least nine Colletotrichum species, particularly Colletotrichum truncatum, have been recorded on legumes worldwide (1). In June 2010, samples of chickpea leaflets showing leaf spot disease symptoms were collected from experimental farms in Ladang Dua, Selangor state of Malaysia. Tan lesions with darker brown borders were observed on leaflets and were associated with premature leaf drop. Stem lesions initially appeared on the lower parts of stems and later progressed higher in the plant. Lesions often girdled the stem and caused severe dieback. Abundant acervuli developed in the lesions visible as black dots. Foliar lesions were removed, surface sterilized in 1% sodium hypochlorite for 2 min, rinsed twice with distilled water, dried on sterilized tissue paper, plated on PDA plates, and incubated at 25°C (3). Three isolates of the fungus were obtained and identified as C. truncatum on the basis of morphological characteristics (2). The isolates were deposited in the University Putra of Malaysia Culture Collection (UPMCC). Colony characteristics on PDA varied from greyish white to dark in color and exhibited mycelial growth with sparse acervuli. The isolates produced both sclerotia and setae in culture. Conidia (mean ± SD = 22 ± 0.83 × 3.6 ± 0.08 μm, L/W ratio = 6.1) produced in acervuli were falcate, hyaline, and aseptate, with tapering towards the acute and greatly curved apex. The conidial mass color varied from pale buff to saffron. Isolates produced simple to slightly lobed, mainly short clavate appressoria (mean ± SD = 9.60 ± 0.36 × 6.67 ± 0.29 μm, L/W ratio = 1.45). Amplification and sequence analysis of coding and none-coding regions of the ITS-rDNA (GenBank Accession JX971160), actin (JX975392), β-tubulin (KC109495), histone (KC109535), chitin synthase (KC109575), and glyceraldehyde-3-phosphate dehydrogenase (KC109615) obtained from the representative isolate, CTM37, aligned with deposited sequences from GenBank and revealed 99 to 100% sequence identity with C. truncatum strains (AJ301945, KC110827, GQ849442, GU228081, GU228359, and HM131501 from GenBank). Isolate CTM37 was used to test pathogenicity in the greenhouse. Five chickpea seeds of cultivar ILC-1929 were sown per pot in four replications. Ten days after seedling emergence, plants were inoculated with a spore suspension (concentration = 106 conidia ml-1) and check pots were sprayed with distilled water. After inoculation, the plants were covered with plastic bags for 48 h and kept at 28 to 33°C and >90% RH. After incubation, the plastic bags were removed and the plants were placed on greenhouse benches and monitored daily for symptom development (3). One week after inoculation, typical anthracnose symptoms developed on the leaves and stems of inoculated plants including acervuli formation, but not on the checks. A fungus with the same colony and conidial morphology as CTM37 was recovered from the lesions on the inoculated plants. The experiment was repeated twice. The ability to accurately diagnose Colletotrichum species is vital for the implementation of effective disease control and quarantine measures. We believe this is the first report of C. truncatum causing anthracnose on chickpea in Malaysia. References: (1) B. D. Gossen et al. Can. J. Plant Pathol. 31:65, 2009. (2) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford. UK. 1992. (3) P. P. Than et al. Plant Pathol. 57:562, 2008. ERRATUM: A correction was made to this Disease Note on May 19, 2014. The author N. Soleimani was added.
    Matched MeSH terms: Colletotrichum
  19. Kee YJ, Zakaria L, Mohd MH
    J Appl Microbiol, 2020 Sep;129(3):626-636.
    PMID: 32167647 DOI: 10.1111/jam.14640
    AIMS: To characterize causal pathogen of Sansevieria trifasciata anthracnose through morphology and molecular analysis; to evaluate the host range of the pathogen; and to explicate the infection process by the pathogen histopathologically.

    METHODS AND RESULTS: Symptomatic leaves of S. trifasciata were collected from five states in Malaysia. The causal pathogen was isolated and identified for the first time in Malaysia as C. sansevieriae based on morphological and multi-gene phylogenetic analyses using ITS, TUB2 and GAPDH sequences. Pathogenicity tests were conducted on different hosts. Colletotrichum sansevieriae was not pathogenic towards S. cylindrica, S. masoniana, Furcraea foetida, Chlorophytum comosum, Aloe vera and Gasteria carinata, confirming the exceptionally high host specificity for a species of Colletotrichum. Histopathology was performed using light microscope and scanning electron microscopy to study the infection process of C. sansevieriae on S. trifasciata. Colonization of host leaves by the pathogen was observed 2 days after inoculation.

    CONCLUSIONS: Colletotrichum sansevieriae caused anthracnose of S. trifasciata in Malaysia. It is a host-specific pathogen and colonized the host intracellularly.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of C. sansevieriae causing anthracnose of S. trifasciata in Malaysia. The host range test and understanding of the infection process will provide better understanding of the host-pathogen relationship and beneficial for effective disease management.

    Matched MeSH terms: Colletotrichum
  20. de Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, et al.
    IMA Fungus, 2019;10:8.
    PMID: 32355609 DOI: 10.1186/s43008-019-0001-y
    Anthracnose of chili (Capsicum spp.) causes major production losses throughout Asia where chili plants are grown. A total of 260 Colletotrichum isolates, associated with necrotic lesions of chili leaves and fruit were collected from chili producing areas of Indonesia, Malaysia, Sri Lanka, Thailand and Taiwan. Colletotrichum truncatum was the most commonly isolated species from infected chili fruit and was readily identified by its falcate spores and abundant setae in the necrotic lesions. The other isolates consisted of straight conidia (cylindrical and fusiform) which were difficult to differentiate to species based on morphological characters. Taxonomic analysis of these straight conidia isolates based on multi-gene phylogenetic analyses (ITS, gapdh, chs-1, act, tub2, his3, ApMat, gs) revealed a further seven known Colletotrichum species, C. endophyticum, C. fructicola, C. karsti, C. plurivorum, C. scovillei, C. siamense and C. tropicale. In addition, three novel species are also described as C. javanense, C. makassarense and C. tainanense, associated with anthracnose of chili fruit in West Java (Indonesia); Makassar, South Sulawesi (Indonesia); and Tainan (Taiwan), respectively. Colletotrichum siamense is reported for the first time causing anthracnose of Capsicum annuum in Indonesia and Sri Lanka. This is also the first report of C. fructicola causing anthracnose of chili in Taiwan and Thailand and C. plurivorum in Malaysia and Thailand. Of the species with straight conidia, C. scovillei (acutatum complex), was the most prevalent throughout the surveyed countries, except for Sri Lanka from where this species was not isolated. Colletotrichum siamense (gloeosporioides complex) was also common in Indonesia, Sri Lanka and Thailand. Pathogenicity tests on chili fruit showed that C. javanense and C. scovillei were highly aggressive, especially when inoculated on non-wounded fruit, compared to all other species. The existence of new, highly aggressive exotic species, such as C. javanense, poses a biosecurity risk to production in countries which do not have adequate quarantine regulations to restrict the entry of exotic pathogens.
    Matched MeSH terms: Colletotrichum
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links