Displaying all 4 publications

Abstract:
Sort:
  1. Laith AA, Mazlan AG, Effendy AW, Ambak MA, Nurhafizah WWI, Alia AS, et al.
    Res Vet Sci, 2017 Jun;112:192-200.
    PMID: 28499213 DOI: 10.1016/j.rvsc.2017.04.020
    The current study was designed to evaluate the effects of Excoecaria agallocha leaf extracts on immune mechanisms and resistance of tilapia, Oreochromis niloticus, after challenge with Streptococcus agalactiae. Fish were divided into 6 groups; groups 1-5 fed with E. agallocha leaf extracts at 10, 20, 30, 40 and 50mgkg(-1) level, respectively. Group 6 were fed without extract addition and acted as control. E. agallocha extracts were administered as feed supplement in fish diet for 28days and the hematological, immunological, and growth performance studies were conducted. Fish were infected with S. agalactiae at a dose of 15×105CFUmL(-1) and the total white blood cell (WBC), phagocytosis and respiratory burst activities of leukocytes, serum bactericidal activity, lysozyme, total protein, albumin, and globulin levels were monitored and mortalities recorded for 15days post infection. Results revealed that feeding O. niloticus with 50mgkg(-1) of E. agallocha enhanced WBC, phagocytic, respiratory burst, serum bactericidal and lysozyme activities on day 28 pre-challenge and on 3rd, 6th, 9th, 12th and 15th day post-challenge as compared to control. Total protein and albumin were not enhanced by E. agallocha diet. E. agallocha increased the survival of fish after challenge with S. agalactiae. The highest mortality rate (97%) was observed in control fish and the lowest mortality (27%) was observed with group fed with 50mgkg(-1) extract. The results indicate that dietary intake of E. agallocha methanolic leaf extract in O. niloticus enhances the non-specific immunity and disease resistance against S. agalactiae pathogen.
    Matched MeSH terms: Cichlids/microbiology*
  2. Laith AA, Abdullah MA, Nurhafizah WWI, Hussein HA, Aya J, Effendy AWM, et al.
    Fish Shellfish Immunol, 2019 Jul;90:235-243.
    PMID: 31009810 DOI: 10.1016/j.fsi.2019.04.052
    Streptococcus agalactiae species have been recognized as the main pathogen causing high mortality in fish leading to significant worldwide economical losses to the aquaculture industries. Vaccine development has become a priority in combating multidrug resistance in bacteria; however, there is a lack of commercial live attenuated vaccine (LAV) against S. agalactiae in Malaysia. The aim of this study is to compare two methods using attenuated bacteria as live vaccine and to evaluate the efficacy of selected LAV on the immune responses and resistance of Oreochromis niloticus (tilapia) against S. agalactiae. The LAV derived from S. agalactiae had been weakened using the chemical agent Acriflavine dye (LAV1), whereas the second vaccine was weakened using serial passages of bacteria on broth media (LAV2). Initial immunization was carried out only on day one, given twice-in the morning and evening, for the 42 day period. Serum samples were collected to determine the systemic antibody (IgM) responses and lysozymal (LSZ) activity using ELISA. On day 43 after immunization, the fish were injected intraperitoneally (i.p) with 0.1 mL of S. agalactiae at LD50 = 1.5 × 105 (CFU)/fish. Fish were monitored daily for 10 days. Clinical signs, mortality and the relative percent of survival (RPS) were recorded. Trial 1 results showed a significant increased (P 
    Matched MeSH terms: Cichlids/microbiology*
  3. Aisyhah MA, Amal MN, Zamri-Saad M, Siti-Zahrah A, Shaqinah NN
    J Fish Dis, 2015 Dec;38(12):1093-8.
    PMID: 25704397 DOI: 10.1111/jfd.12351
    Matched MeSH terms: Cichlids/microbiology
  4. Rahmatullah M, Ariff M, Kahieshesfandiari M, Daud HM, Zamri-Saad M, Sabri MY, et al.
    J Aquat Anim Health, 2017 Dec;29(4):208-213.
    PMID: 28787246 DOI: 10.1080/08997659.2017.1360411
    This study describes the isolation and pathogenicity of Streptococcus iniae in cultured red hybrid tilapia (Nile Tilapia Oreochromis niloticus × Mozambique Tilapia O. mossambicus) in Malaysia. The isolated gram-positive S. iniae appeared punctiform, transparently white, catalase and oxidase negative and produced complete β-hemolysis on blood agar, while a PCR assay resulted in the amplification of the 16 S rRNA gene and lactate oxidase encoded genes. The isolate was sensitive to tetracycline, vancomycin, and bacitracin but was resistant to streptomycin, ampicillin, penicillin, and erythromycin. Pathogenicity trials conducted in local red hybrid tilapia (mean ± SE = 20.00 ± 0.45 g) showed 90.0, 96.7, and 100.0% mortality within 14 d postinfection following intraperitoneal exposure to 104, 106, and 108 CFU/mL of the pathogen, respectively. The clinical signs included erratic swimming, lethargy, and inappetance at 6 h postinfection, while mortality was recorded at less than 24 h postinfection in all infected groups. The LD50-336 h of S. iniae against the red hybrid tilapia was 102 CFU/mL. The post mortem examinations revealed congested livers, kidneys, and spleens of the infected fish. This is the first report of S. iniae experimental infection in cultured red hybrid tilapia in Malaysia. Received January 20, 2017; accepted July 16, 2017.
    Matched MeSH terms: Cichlids/microbiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links