Displaying all 4 publications

Abstract:
Sort:
  1. Tan AW, Tay L, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B
    Int J Nanomedicine, 2014;9:5389-401.
    PMID: 25473278 DOI: 10.2147/IJN.S72659
    Two important criteria of an ideal biomaterial in the field of stem cells research are to regulate the cell proliferation without the loss of its pluripotency and to direct the differentiation into a specific cell lineage when desired. The present study describes the influence of TiO2 nanofibrous surface structures on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). TiO2 nanofiber arrays were produced in situ onto Ti-6Al-4V substrate via a thermal oxidation process and the successful fabrication of these nanostructures was confirmed by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and contact angle measurement. ADSCs were seeded on two types of Ti-6Al-4V surfaces (TiO2 nanofibers and flat control), and their morphology, proliferation, and stemness expression were analyzed using FESEM, AlamarBlue assay, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) after 2 weeks of incubation, respectively. The results show that ADSCs exhibit better adhesion and significantly enhanced proliferation on the TiO2 nanofibrous surfaces compared to the flat control surfaces. The greater proliferation ability of TiO2 nanofibrous surfaces was further confirmed by the results of cell cycle assay. More importantly, TiO2 nanofibrous surfaces significantly upregulate the expressions of stemness markers Sox-2, Nanog3, Rex-1, and Nestin. These results demonstrate that TiO2 nanofibrous surfaces can be used to enhance cell adhesion and proliferation while simultaneously maintaining the stemness of ADSCs, thereby representing a promising approach for their potential application in the field of bone tissue engineering as well as regenerative therapies.
    Matched MeSH terms: Cell Physiological Phenomena/drug effects*
  2. Abdullah A, Deris S, Mohamad MS, Anwar S
    PLoS One, 2013;8(4):e61258.
    PMID: 23593445 DOI: 10.1371/journal.pone.0061258
    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
    Matched MeSH terms: Cell Physiological Phenomena/physiology*
  3. Shahrulazua A, Samsudin A, Iskandar M, Amran A
    Malays Orthop J, 2013 Mar;7(1):41-8.
    PMID: 25722806 MyJurnal DOI: 10.5704/MOJ.1303.015
    Despite its claimed therapeutic effects, the action of sea cucumber (known as gamat in the Malay language) on human osteoblast cells is still unknown. We performed in vitro studies utilising extract of Stichopus sp1 (gamat) to elucidate its effects on cell viability and functional activity. We found an inverse relationship between gamat concentration and its effect on osteoblast cell viability (p<0.001). Only gamat concentration at 1mg/ml significantly promoted cell viability at day 3 of incubation. There was a trend towards increased osteoblast cell function in the presence of gamat at 5mg/ml and 10mg/ml but this observation was not consistent at different incubation periods.
    Matched MeSH terms: Cell Physiological Phenomena
  4. Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:542-548.
    PMID: 26652406 DOI: 10.1016/j.msec.2015.10.024
    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O3) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100°C since higher temperatures would impair the hardness of TiN coating. By contrast, O3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant.
    Matched MeSH terms: Cell Physiological Phenomena
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links