Displaying all 4 publications

Abstract:
Sort:
  1. Nasir NM, Bakar NS, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A
    Bioresour Technol, 2015 Aug;190:492-8.
    PMID: 25791330 DOI: 10.1016/j.biortech.2015.03.023
    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.
    Matched MeSH terms: Catfishes/microbiology*
  2. Pang Sing T, Julian R, Hatai K
    Biocontrol Sci, 2019;24(1):1-11.
    PMID: 30880308 DOI: 10.4265/bio.24.1
     The prevalence of antibiotic resistant bacteria in aquaculture has reached alarming proportions and intensified the search for microbe derived antimicrobial compounds. This study isolated bacteria from the intestine of Sagor catfish (Hexanematichthys sagor) and screened it for antagonistic properties. Five out of 334 bacterial isolates inhibited growth of fish pathogens. The 5 bacterial strains included relatives of Shewanella haliotis, Myroides odoratimimus, Vibrio harveyi, Vibrio alginolyticus and Alcaligenes faecalis. The growth profiles and probiotic properties of these bacteria were examined. The results showed that the isolate 9 (3) 7.5.2.1, whose closest relative was S. haliotis exhibited growth and probiotic advantage compared to the other bacterial strains, such as highest doubling time and the ability to survive at all experimental temperatures (18 to 60℃) , and bile concentrations (0.01 to 1.00%) and pH (pH2 to 9) . While the bacteria with probiotic properties were successfully isolated. Further study is necessary to examine the efficiency of the probiotic candidate bacteria in boosting fish immunity against pathogens.
    Matched MeSH terms: Catfishes/microbiology*
  3. Budiati T, Rusul G, Wan-Abdullah WN, Chuah LO, Ahmad R, Thong KL
    J Food Prot, 2016 Apr;79(4):659-65.
    PMID: 27052872 DOI: 10.4315/0362-028X.JFP-15-372
    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.
    Matched MeSH terms: Catfishes/microbiology*
  4. Sheikhlar A, Alimon AR, Daud H, Saad CR, Webster CD, Meng GY, et al.
    ScientificWorldJournal, 2014;2014:592709.
    PMID: 25574488 DOI: 10.1155/2014/592709
    Two experiments were simultaneously conducted with Morus alba (white mulberry) foliage extract (MFE) as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp.) in African catfish (Clarias gariepinus). In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM) of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC), albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM). Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish.
    Matched MeSH terms: Catfishes/microbiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links