Displaying all 12 publications

Abstract:
Sort:
  1. Taher M, Idris MS, Ahmad F, Arbain D
    Phytochemistry, 2005 Mar;66(6):723-6.
    PMID: 15771897
    A polyisoprenylated ketone named enervosanone has been isolated from the stem bark of Calophyllum enervosum together with three known compounds, cambogin, osajaxanthone and epicatechin. Their structures were determined by spectroscopic analysis. The antimicrobial evaluations of the isolated compounds were also reported.
    Matched MeSH terms: Catechin/pharmacology
  2. Shafiei SS, Solati-Hashjin M, Samadikuchaksaraei A, Kalantarinejad R, Asadi-Eydivand M, Abu Osman NA
    PLoS One, 2015;10(8):e0136530.
    PMID: 26317853 DOI: 10.1371/journal.pone.0136530
    In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties.
    Matched MeSH terms: Catechin/pharmacology
  3. Tsvetkov V, Varizhuk A, Kozlovskaya L, Shtro A, Lebedeva O, Komissarov A, et al.
    Biochimie, 2021 Dec;191:27-32.
    PMID: 34389380 DOI: 10.1016/j.biochi.2021.08.003
    In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.
    Matched MeSH terms: Catechin/pharmacology
  4. Perumal S, Mahmud R, Ramanathan S
    Nat Prod Res, 2015;29(18):1766-9.
    PMID: 25571920 DOI: 10.1080/14786419.2014.999242
    Euphorbia hirta (L.) plant is traditionally used in Malaysia for the treatment of gastrointestinal, bronchial and respiratory ailments caused by nosocomial infectious agents. Bioactivity-guided fractionation of the methanol extract of the aerial parts of E. hirta and analysis using high-performance liquid chromatography have led to the isolation of two antibacterial compounds. These compounds were identified as caffeic acid (CA) and (-)-epicatechin 3-gallate (ECG) based on spectroscopic analyses and comparison with previously published data. Using broth microdilution method, both ECG and CA had demonstrated significant minimum inhibitory concentration of 15.6 and 31.3 μg/mL respectively, against Pseudomonas aeruginosa. Time-kill assessment of ECG and CA displayed bactericidal effect on P. aeruginosa cells.
    Matched MeSH terms: Catechin/pharmacology
  5. Javadi N, Abas F, Abd Hamid A, Simoh S, Shaari K, Ismail IS, et al.
    J Food Sci, 2014 Jun;79(6):C1130-6.
    PMID: 24888400 DOI: 10.1111/1750-3841.12491
    Cosmos caudatus, which is known as "Ulam Raja," is an herbal plant used in Malaysia to enhance vitality. This study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of C. caudatus. Six series of samples extracted with water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were employed. Gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least-squares (OPLS) analysis was used to correlate bioactivity of different extracts to different metabolite profiles of C. caudatus. The obtained OPLS scores indicated a distinct and remarkable separation into 6 clusters, which were indicative of the 6 different ethanol concentrations. GC-MS can be integrated with multivariate data analysis to identify compounds that inhibit α-glucosidase activity. In addition, catechin, α-linolenic acid, α-D-glucopyranoside, and vitamin E compounds were identified and indicate the potential α-glucosidase inhibitory activity of this herb.
    Matched MeSH terms: Catechin/pharmacology
  6. Syarifah-Noratiqah SB, Naina-Mohamed I, Zulfarina MS, Qodriyah HMS
    Curr Drug Targets, 2018;19(8):927-937.
    PMID: 28356027 DOI: 10.2174/1389450118666170328122527
    Neurodegenerative disease is an incurable disease which involves the degeneration or death of the nerve cells. Alzheimer's Disease (AD) is a neurodegenerative disease discovered in 1906 by Alois Alzheimer, a German clinical psychiatrist and neuroanatomist. The main pathological hallmarks of this disease are the formation of extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary tangle (NFT). The accumulation of the amyloid protein aggregates in the brain of AD patients leads to oxidative stress and inflammation. Other postulated reasons for the development of this disease are cholinergic depletion and excessive glutamatergic neurotransmission. The current drugs approved and marketed for the treatment of AD are cholinesterase inhibitors (ChEIs) and N-methyl-Daspartate (NMDA) receptor antagonists. The function of ChEIs is to avoid cholinergic depletion; whereas the function of NMDA receptor antagonist is to block excessive glutamatergic neurotransmission. Unfortunately, the current drugs prescribed for AD show only modest improvement in terms of symptomatic relief and delay the progression of the disease. This review will discuss about several polyphenolic compounds as potential natural treatment options for AD. Three compounds are highlighted in this review - Curcumin (Cur), Resveratrol (Rsv) and Epigallocatechin-3- gallate (EGCG). These compounds have huge potential for AD treatment, especially due to their low frequency of adverse events. However, the current conventional pharmaceutical drugs remain as the mainstay of treatment for AD.
    Matched MeSH terms: Catechin/pharmacology
  7. Eng QY, Thanikachalam PV, Ramamurthy S
    J Ethnopharmacol, 2018 Jan 10;210:296-310.
    PMID: 28864169 DOI: 10.1016/j.jep.2017.08.035
    ETHNOPHARMACOLOGICAL RELEVANCE: The compound epigallocatechin-3-gallate (EGCG), the major polyphenolic compound present in green tea [Camellia sinensis (Theaceae], has shown numerous cardiovascular health promoting activity through modulating various pathways. However, molecular understanding of the cardiovascular protective role of EGCG has not been reported.

    AIM OF THE REVIEW: This review aims to compile the preclinical and clinical studies that had been done on EGCG to investigate its protective effect on cardiovascular and metabolic diseases in order to provide a systematic guidance for future research.

    MATERIALS AND METHODS: Research papers related to EGCG were obtained from the major scientific databases, for example, Science direct, PubMed, NCBI, Springer and Google scholar, from 1995 to 2017.

    RESULTS: EGCG was found to exhibit a wide range of therapeutic properties including anti-atherosclerosis, anti-cardiac hypertrophy, anti-myocardial infarction, anti-diabetes, anti-inflammatory and antioxidant. These therapeutic effects are mainly associated with the inhibition of LDL cholesterol (anti-atherosclerosis), inhibition of NF-κB (anti-cardiac hypertrophy), inhibition of MPO activity (anti-myocardial infarction), reduction in plasma glucose and glycated haemoglobin level (anti-diabetes), reduction of inflammatory markers (anti-inflammatory) and the inhibition of ROS generation (antioxidant).

    CONCLUSION: EGCG shows different biological activities and in this review, a compilation of how this bioactive molecule plays its role in treating cardiovascular and metabolic diseases was discussed.

    Matched MeSH terms: Catechin/pharmacology
  8. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Catechin/pharmacology
  9. Mohamed S, Lee Ming T, Jaffri JM
    J Sci Food Agric, 2013 Mar 15;93(4):819-27.
    PMID: 23001939 DOI: 10.1002/jsfa.5802
    Catechin-rich oil palm (Elaeis guineensis) leaf extract (OPLE) has good cardiovascular and phytoestrogenic properties. The OPLE (0.5 g day(-1) ) was supplemented to young, healthy, adult human volunteers, and their cognitive learning abilities were compared to placebo-controlled groups (N = 15). Their short-term memories, spatial visualisations, processing speeds, and language skills, were assessed over 2 months by cognitive tests computer programs.
    Matched MeSH terms: Catechin/pharmacology*
  10. Ravindran R, Jaganathan R, Periandavan K
    Cell Biochem Funct, 2020 Apr;38(3):309-318.
    PMID: 31926118 DOI: 10.1002/cbf.3490
    The aim is to test the hypothesis whether the cholesterol loaded lysosomes are capable of mediating lysosomal membrane permeabilization (LMP) during aging and to study the efficacy of epigallocatechin-3-gallate (EGCG) in preserving the lysosomal membrane stability. Aged rats were fed with high cholesterol diet (HCD) and treated with EGCG orally. Serum and tissue lipid status, cholesterol levels in lysosomal fraction, activities of lysosomal enzymes in lysosomal, and cytosolic fractions were measured. Transmission electron microscopic studies (TEM), oil red "O" (ORO) staining, and immunohistochemical analysis of oxidized low density lipoprotein (OxLDL) were carried out. Significant increase in serum, tissue lipid profile, and lysosomal cholesterol levels were observed in aged HCD-fed rats with a concomitant decrease in high density lipoprotein (HDL) levels. We also observed a significant increase in lipid accumulation in hepatocytes of aged HCD-fed rats by TEM, ORO, and immunohistochemical staining. Upon treatment with EGCG to aged HCD-fed animals, we found augmented levels of HDL with a concomitant decrease in lysosomal cholesterol levels and other lipoproteins. TEM studies and immunohistochemistry of OxLDL also showed a marked reduction in lipid deposition of hepatocytes. Thus, EGCG has preserved the lysosomal membrane stability in HCD stressed aged rats. SIGNIFICANCE OF THE STUDY: The research article is focused mainly on the effect of EGCG and its capability on mitigating the release of lysosomal enzymes in aged animals fed with HCD. The study signifies the cellular function of the organelle lysosome following administration of aged rats with HCD, which would make the readers to understand the action of EGCG and the interrelationship of both cholesterol and activity of lysosomes when cholesterol is loaded.
    Matched MeSH terms: Catechin/pharmacology
  11. Wong DZ, Kadir HA, Ling SK
    J Ethnopharmacol, 2012 Jan 6;139(1):256-64.
    PMID: 22107836 DOI: 10.1016/j.jep.2011.11.010
    A parasite plant, Loranthus parasiticus (Loranthaceae), which is generally known as benalu teh (in Malay), Sang Ji Sheng (in Chinese), and baso-kisei (in Japan) distributed in south and southwest part of China, has been used as a folk medicine for the treatment of schizophrenia in southwest China. Loranthus parasiticus has various uses in folk and traditional medicines for bone, brain, kidney, liver, expels wind-damp, and prevents miscarriage.
    Matched MeSH terms: Catechin/pharmacology*
  12. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: Catechin/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links