Candidaemia and invasive candidiasis (IC) complicate modern medical therapy, contributing to high morbidity and mortality. Managing candidiasis is costly, with an additional healthcare expenditure of nearly US$300 million annually. Recent consensus guidelines have suggested the use of newer antifungal agents, such as echinocandins, for the treatment of candidaemia and IC owing to promising clinical outcomes compared with older-generation antifungal agents, but at higher drug acquisition and administration costs. Comprehensive cost-effectiveness data for echinocandins in treating candidaemia and IC remain relatively scant, underlining the need for more studies to incorporate robust economic analyses into clinical decisions. Assessment of the cost efficiencies of these expensive antifungal agents is essential for maximising health outcomes within the constraints of healthcare resources. This review will explore the epidemiology of candidaemia and IC in the context of clinical and economic aspects of the antifungal agents used to treat IC, especially the echinocandins. Standardising the outcome measure, methodology and reporting of results used in economic studies is central to ensure validity and comparability of the findings. Future studies comparing the economic advantages of all available antifungal treatment options and in the context of new diagnostic tools for fungal infections are anticipated.
Micafungin was shown to be as efficacious as caspofungin in treating patients with candidaemia and invasive candidiasis (IC). However, it remains unknown if micafungin or caspofungin is a cost-effective definitive therapy for candidaemia and IC in Turkey. The present study aimed to determine the economic impact of using micafungin versus caspofungin for treatment of candidaemia and IC in the Turkish setting. A decision analytic model was constructed and was populated with data (i.e. transition probabilities, duration of initial antifungal treatment, reasons for treatment failure, percentage of patients who stepped down to oral fluconazole, and duration on oral fluconazole) obtained from a published randomised clinical trial. Cost inputs were derived from the latest Turkish resources while data that were not readily available in the literature were estimated by expert panels. One-way sensitivity analyses, threshold analyses, scenario analyses and probabilistic sensitivity analyses were conducted. Caspofungin (€2693) incurred a lower total cost than micafungin (€4422), with a net cost saving of €1729 per treated patient. Drug acquisition cost was the main cost driver for both study arms. The model outcome was robust over wide variations (of ±100.0% from the base case value) for all input parameters except for micafungin drug cost and the duration of initial treatment with micafungin. Caspofungin appears to be a cost-saving option in treating candidaemia and IC from the Turkish hospital perspective.
Micafungin was reported to be non-inferior to liposomal amphotericin B (LAmB) in treating patients with candidaemia and invasive candidiasis (IC). The current study aimed to evaluate the economic impact of using micafungin versus LAmB for treatment of candidaemia and IC in Turkey. A decision analytic model, which depicted economic consequences upon administration of micafungin or LAmB for treating patients with candidaemia and IC in the Turkish hospitals, was constructed. Patients were switched to an alternative antifungal agent if initial treatment failed due to mycological persistence. All patients were followed up until treatment success or death. Outcome probabilities were obtained from published literature and cost inputs were derived from the latest Turkish resources. Expert panels were used to estimate data that were not available in the literature. Cost per patient treated for each intervention was then calculated. Sensitivity analyses including Monte Carlo simulation were performed. For treatment of candidaemia and IC, micafungin (€4809) was associated with higher total cost than LAmB (€4467), with an additional cost of €341 per treated patient. Cost of initial antifungal treatment was the major cost driver for both comparators. The model outcome was robust over a wide variation in input variables except for drug acquisition cost and duration of initial antifungal treatment with micafungin or LAmB. LAmB is cost-saving relative to micafungin for the treatment of candidaemia and IC from the Turkish hospital perspective, with variation in drug acquisition cost of the critical factor affecting the model outcome.
In the Asia-Pacific region, Candida albicans is the predominant Candida species causing invasive candidiasis/candidemia in Australia, Japan, Korea, Hong Kong, Malaysia, Singapore and Thailand whereas C. tropicalis is the most frequently encountered Candida species in Pakistan and India. Invasive isolates of C. albicans, C. parapsilosis complex and C. tropicalis remain highly susceptible to fluconazole (>90% susceptible). Fluconazole resistance (6.8-15%), isolates with the non-wild-type phenotype for itraconazole susceptibility (3.9-10%) and voriconazole (5-17.8%), and echinocandin resistance (2.1-2.2% in anidulafungin and 2.2% in micafungin) among invasive C. glabrata complex isolates are increasing in prevalence. Moreover, not all isolates of C. tropicalis have been shown to be susceptible to fluconazole (nonsusceptible rate, 5.7-11.6% in China) or voriconazole (nonsusceptible rate, 5.7-9.6% in China).