Displaying all 11 publications

Abstract:
Sort:
  1. Lai NM, Rajadurai SV, Tan KH
    PMID: 16856077
    Preterm infants with bronchopulmonary dysplasia/chronic lung disease have nutritional deficits that may contribute to short and long term morbidity and mortality. Increasing the daily energy intake for these infants may improve their respiratory, growth and neurodevelopmental outcomes.
    Matched MeSH terms: Bronchopulmonary Dysplasia/diet therapy*; Bronchopulmonary Dysplasia/physiopathology
  2. Stafford IG, Lai NM, Tan K
    Cochrane Database Syst Rev, 2023 Nov 30;11(11):CD013294.
    PMID: 38032241 DOI: 10.1002/14651858.CD013294.pub2
    BACKGROUND: Many preterm infants require respiratory support to maintain an optimal level of oxygenation, as oxygen levels both below and above the optimal range are associated with adverse outcomes. Optimal titration of oxygen therapy for these infants presents a major challenge, especially in neonatal intensive care units (NICUs) with suboptimal staffing. Devices that offer automated oxygen delivery during respiratory support of neonates have been developed since the 1970s, and individual trials have evaluated their effectiveness.

    OBJECTIVES: To assess the benefits and harms of automated oxygen delivery systems, embedded within a ventilator or oxygen delivery device, for preterm infants with respiratory dysfunction who require respiratory support or supplemental oxygen therapy.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, CINAHL, and clinical trials databases without language or publication date restrictions on 23 January 2023. We also checked the reference lists of retrieved articles for other potentially eligible trials.

    SELECTION CRITERIA: We included randomised controlled trials and randomised cross-over trials that compared automated oxygen delivery versus manual oxygen delivery, or that compared different automated oxygen delivery systems head-to-head, in preterm infants (born before 37 weeks' gestation).

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our main outcomes were time (%) in desired oxygen saturation (SpO2) range, all-cause in-hospital mortality by 36 weeks' postmenstrual age, severe retinopathy of prematurity (ROP), and neurodevelopmental outcomes at approximately two years' corrected age. We expressed our results using mean difference (MD), standardised mean difference (SMD), and risk ratio (RR) with 95% confidence intervals (CIs). We used GRADE to assess the certainty of evidence.

    MAIN RESULTS: We included 18 studies (27 reports, 457 infants), of which 13 (339 infants) contributed data to meta-analyses. We identified 13 ongoing studies. We evaluated three comparisons: automated oxygen delivery versus routine manual oxygen delivery (16 studies), automated oxygen delivery versus enhanced manual oxygen delivery with increased staffing (three studies), and one automated system versus another (two studies). Most studies were at low risk of bias for blinding of personnel and outcome assessment, incomplete outcome data, and selective outcome reporting; and half of studies were at low risk of bias for random sequence generation and allocation concealment. However, most were at high risk of bias in an important domain specific to cross-over trials, as only two of 16 cross-over trials provided separate outcome data for each period of the intervention (before and after cross-over). Automated oxygen delivery versus routine manual oxygen delivery Automated delivery compared with routine manual oxygen delivery probably increases time (%) in the desired SpO2 range (MD 13.54%, 95% CI 11.69 to 15.39; I2 = 80%; 11 studies, 284 infants; moderate-certainty evidence). No studies assessed in-hospital mortality. Automated oxygen delivery compared to routine manual oxygen delivery may have little or no effect on risk of severe ROP (RR 0.24, 95% CI 0.03 to 1.94; 1 study, 39 infants; low-certainty evidence). No studies assessed neurodevelopmental outcomes. Automated oxygen delivery versus enhanced manual oxygen delivery There may be no clear difference in time (%) in the desired SpO2 range between infants who receive automated oxygen delivery and infants who receive manual oxygen delivery (MD 7.28%, 95% CI -1.63 to 16.19; I2 = 0%; 2 studies, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. Revised closed-loop automatic control algorithm (CLACfast) versus original closed-loop automatic control algorithm (CLACslow) CLACfast allowed up to 120 automated adjustments per hour, whereas CLACslow allowed up to 20 automated adjustments per hour. CLACfast may result in little or no difference in time (%) in the desired SpO2 range compared to CLACslow (MD 3.00%, 95% CI -3.99 to 9.99; 1 study, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. OxyGenie compared to CLiO2 Data from a single small study were presented as medians and interquartile ranges and were not suitable for meta-analysis.

    AUTHORS' CONCLUSIONS: Automated oxygen delivery compared to routine manual oxygen delivery probably increases time in desired SpO2 ranges in preterm infants on respiratory support. However, it is unclear whether this translates into important clinical benefits. The evidence on clinical outcomes such as severe retinopathy of prematurity are of low certainty, with little or no differences between groups. There is insufficient evidence to reach any firm conclusions on the effectiveness of automated oxygen delivery compared to enhanced manual oxygen delivery or CLACfast compared to CLACslow. Future studies should include important short- and long-term clinical outcomes such as mortality, severe ROP, bronchopulmonary dysplasia/chronic lung disease, intraventricular haemorrhage, periventricular leukomalacia, patent ductus arteriosus, necrotising enterocolitis, and long-term neurodevelopmental outcomes. The ideal study design for this evaluation is a parallel-group randomised controlled trial. Studies should clearly describe staffing levels, especially in the manual arm, to enable an assessment of reproducibility according to resources in various settings. The data of the 13 ongoing studies, when made available, may change our conclusions, including the implications for practice and research.

    Matched MeSH terms: Bronchopulmonary Dysplasia*
  3. Kua KP, Lee SW
    Br J Clin Pharmacol, 2017 01;83(1):180-191.
    PMID: 27526255 DOI: 10.1111/bcp.13089
    AIMS: This study evaluated the therapeutic outcomes of early versus late caffeine therapy in preterm neonates.

    METHODS: We performed a systematic literature search in PubMed, Embase, CINAHL and CENTRAL from inception to 30 June 2016 to identify studies investigating the use of early caffeine therapy (initiated at less than 3 days of life) in preterm infants. Effect estimates were combined using random-effects meta-analysis. The primary outcomes for this study were bronchopulmonary dysplasia and mortality.

    RESULTS: The initial search found 4066 citations, of which 14 studies enrolling a total of 64 438 participants were included. The time of initiation of early caffeine therapy varied from the first 2 h to 3 days postnatal. Early caffeine therapy reduced the risk of bronchopulmonary dysplasia in both cohort studies (RR: 0.80, 95% CI: 0.66 to 0.96) and randomized controlled trials (RR: 0.67, 95% CI: 0.56 to 0.81). In cohort studies, neonates treated early with caffeine also showed decreased risks of patent ductus arteriosus, brain injury, retinopathy of prematurity and postnatal steroid use. However, the mortality rate was increased.

    CONCLUSIONS: The findings suggest that early caffeine therapy is associated with reduced incidence of bronchopulmonary dysplasia and may help decrease the burden of morbidities in preterm infants.

    Matched MeSH terms: Bronchopulmonary Dysplasia/mortality; Bronchopulmonary Dysplasia/prevention & control*
  4. Sivarajah RS, Koh MT, Tan P, Ooi SE, Ong G
    Med J Malaysia, 1984 Mar;39(1):88-91.
    PMID: 6549042
    Long-term ventilatory support of a child with bronchopulmonary dysplasia is described. Dedicated nursing care and emotional support of child and family were two important factors in the management of the child in intensive care, and in the weaning of the child from the ventilator.
    Matched MeSH terms: Bronchopulmonary Dysplasia/therapy*
  5. Boo NY, Cheah IG, Neoh SH, Chee SC, Malaysian National Neonatal Registry
    Neonatology, 2016;110(2):116-24.
    PMID: 27074004 DOI: 10.1159/000444316
    BACKGROUND: Early nasal continuous positive airway pressure (EnCPAP) therapy after birth for very low birth weight (VLBW; <1,500 g) neonates has been reported to be beneficial in developed countries. Its benefits in developing countries, such as Malaysia, are unknown.

    OBJECTIVES: This study aimed to determine EnCPAP rates in 36 neonatal intensive care units of the Malaysian National Neonatal Registry (MNNR) in 2013, to compare the outcomes of VLBW neonates with and without EnCPAP, and to determine whether the availability of CPAP facilities and unit policies played a significant role in EnCPAP rates.

    METHODS: First, a retrospective cohort study was conducted of VLBW neonates born in the hospitals participating in the study without major congenital abnormalities in the MNNR. This was followed by a questionnaire survey of these hospitals focussed on CPAP facilities and unit policies.

    RESULTS: Of the 2,823 neonates, 963 (34.1%) received EnCPAP. Amongst EnCPAP neonates significantly fewer deaths were recorded (10.9 vs. 21.7%; p < 0.001), less bronchopulmonary dysplasia was observed (BPD; 8.0 vs. 11.7%; p = 0.002) and fewer mechanical ventilation days were necessary (p < 0.001) than in non-EnCPAP neonates. Logistic regression analysis showed that EnCPAP was significantly associated with a lower mortality (adjusted OR 0.623; 95% CI 0.472, 0.824; p = 0.001) and BPD among survivors (adjusted OR 0.585; 95% CI 0.427, 0.802; p = 0.001). The median EnCPAP rate of the 36 hospitals was 28.4% (IQR 14.3-38.7). Hospitals with CPAP facilities in the delivery suites (p = 0.001) and during transport (p = 0.001) and a policy for EnCPAP (p = 0.036) had significantly higher EnCPAP rates.

    CONCLUSION: EnCPAP reduced mortality and BPD in Malaysian VLBW neonates. Resource-strapped developing countries should prioritise the use of this low-cost therapy.

    Matched MeSH terms: Bronchopulmonary Dysplasia/epidemiology*; Bronchopulmonary Dysplasia/prevention & control
  6. Jacqueline, H.O.
    MyJurnal
    A retrospective survey was carried out in a neonatal unit to identify babies who required oxygen for more than the first 28 days of life and to determine the cause of their oxygen dependency. A total of 9173 neonates were admitted over a three year period. Approximately 750 were ventilated. Fifteen required oxygen for more than the first 28 days. Ten (67%) of these were due to bronchopulmonary dysplasia. 2 had upper airway complications of mechanical ventilation, one had recurrent apnoea, one had recurrent pneumonia, and one who did not require ventilation had chronic oxygen dependency of unknown cause. Bronchopulmonary dysplasia was the commonest cause of chronic oxygen dependency. The incidence was 1.5% of ventilated babies.
    Matched MeSH terms: Bronchopulmonary Dysplasia
  7. Aisha Fadhilah Abang Abdullah, Zurina Zainudin, Dg. Zuraini Sahadan
    MyJurnal
    Cytomegalovirus (CMV) is frequently isolated from neonates. Symptomatic infection is only apparent in 10% of affected babies with particular predilection for the reticuloendothelial and central nervous system. Isolated respiratory system involvement is rarely encountered. We report a case of a premature 32 weeks infant who required prolonged oxygen dependency and treated for bronchopulmonary dysplasia. The diagnosis of CMV pneumonitis was only discovered after detection of CMV DNA in the bronchoalveolar lavage. A high level of clinical awareness is crucial as a definite diagnosis and treatment will significantly alter the morbidity and the cost of therapy.
    Matched MeSH terms: Bronchopulmonary Dysplasia
  8. Ho JJ, Subramaniam P, Sivakaanthan A, Davis PG
    Cochrane Database Syst Rev, 2020 10 15;10:CD002975.
    PMID: 33058139 DOI: 10.1002/14651858.CD002975.pub2
    BACKGROUND: The application of continuous positive airway pressure (CPAP) has been shown to have some benefits in the treatment of preterm infants with respiratory distress. CPAP has the potential to reduce lung damage, particularly if applied early before atelectasis has occurred. Early application may better conserve an infant's own surfactant stores and consequently may be more effective than later application.

    OBJECTIVES: • To determine if early compared with delayed initiation of CPAP results in lower mortality and reduced need for intermittent positive-pressure ventilation in preterm infants in respiratory distress ○ Subgroup analyses were planned a priori on the basis of weight (with subdivisions at 1000 grams and 1500 grams), gestation (with subdivisions at 28 and 32 weeks), and according to whether surfactant was used ▫ Sensitivity analyses based on trial quality were also planned ○ For this update, we have excluded trials using continuous negative pressure SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 6), in the Cochrane Library; Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations Daily and Versions(R); and the Cumulative Index to Nursing and Allied Health Literatue (CINAHL), on 30 June 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-RCTs.

    SELECTION CRITERIA: We included trials that used random or quasi-random allocation to either early or delayed CPAP for spontaneously breathing preterm infants in respiratory distress.

    DATA COLLECTION AND ANALYSIS: We used the standard methods of Cochrane and Cochrane Neonatal, including independent assessment of trial quality and extraction of data by two review authors. We used the GRADE approach to assess the certainty of evidence.

    MAIN RESULTS: We found four studies that recruited a total of 119 infants. Two were quasi-randomised, and the other two did not provide details on the method of randomisation or allocation used. None of these studies used blinding of the intervention or the outcome assessor. Evidence showed uncertainty about whether early CPAP has an effect on subsequent use of intermittent positive-pressure ventilation (IPPV) (typical risk ratio (RR) 0.77, 95% confidence interval (CI) 0.43 to 1.38; typical risk difference (RD) -0.08, 95% CI -0.23 to 0.08; I² = 0%, 4 studies, 119 infants; very low-certainty evidence) or mortality (typical RR 0.93, 95% CI 0.43 to 2.03; typical RD -0.02, 95% CI -0.15 to 0.12; I² = 33%, 4 studies, 119 infants; very low-certainty evidence). The outcome 'failed treatment' was not reported in any of these studies. There was an uncertain effect on air leak (pneumothorax) (typical RR 1.09, 95% CI 0.39 to 3.04, I² = 0%, 3 studies, 98 infants; very low-certainty evidence). No trials reported intraventricular haemorrhage or necrotising enterocolitis. No cases of retinopathy of prematurity were reported in one study (21 infants). One case of bronchopulmonary dysplasia was reported in each group in one study involving 29 infants. Long-term outcomes were not reported.

    AUTHORS' CONCLUSIONS: All four small trials included in this review were performed in the 1970s or the early 1980s, and we are very uncertain whether early application of CPAP confers clinical benefit in the treatment of respiratory distress, or whether it is associated with any adverse effects. Further trials should be directed towards establishing the appropriate level of CPAP and the timing and method of administration of surfactant when used along with CPAP.

    Matched MeSH terms: Bronchopulmonary Dysplasia/epidemiology
  9. Liau LL, Al-Masawa ME, Koh B, Looi QH, Foo JB, Lee SH, et al.
    Front Pediatr, 2020;8:591693.
    PMID: 33251167 DOI: 10.3389/fped.2020.591693
    Mesenchymal stromal cells (MSCs) can be derived from various tissue sources, such as the bone marrow (BMSCs), adipose tissue (ADSCs), umbilical cord (UC-MSCs) and umbilical cord blood (UCB-MSCs). Clinical trials have been conducted to investigate the potential of MSCs in ameliorating neonatal diseases, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH) and necrotizing enterocolitis (NEC). In preclinical studies, MSC therapy has been tested for the treatment of various neonatal diseases affecting the heart, eye, gut, and brain as well as sepsis. Up to date, the number of clinical trials using MSCs to treat neonatal diseases is still limited. The data reported thus far positioned MSC therapy as safe with positive outcomes. However, most of these trials are still preliminary and generally smaller in scale. Larger trials with more appropriate controls and a longer follow-up period need to be conducted to prove the safety and efficacy of the therapy more conclusively. This review discusses the current application of MSCs in treating neonatal diseases, its mechanism of action and future direction of this novel therapy, including the potential of using MSC-derived extracellular vesicles instead of the cells to treat various clinical conditions in the newborn.
    Matched MeSH terms: Bronchopulmonary Dysplasia
  10. Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, et al.
    Front Pediatr, 2021;9:615508.
    PMID: 33791258 DOI: 10.3389/fped.2021.615508
    Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
    Matched MeSH terms: Bronchopulmonary Dysplasia
  11. Ho JJ, Subramaniam P, Davis PG
    Cochrane Database Syst Rev, 2020 10 15;10:CD002271.
    PMID: 33058208 DOI: 10.1002/14651858.CD002271.pub3
    BACKGROUND: Respiratory distress, particularly respiratory distress syndrome (RDS), is the single most important cause of morbidity and mortality in preterm infants. In infants with progressive respiratory insufficiency, intermittent positive pressure ventilation (IPPV) with surfactant has been the usual treatment, but it is invasive, potentially resulting in airway and lung injury. Continuous positive airway pressure (CPAP) has been used for the prevention and treatment of respiratory distress, as well as for the prevention of apnoea, and in weaning from IPPV. Its use in the treatment of RDS might reduce the need for IPPV and its sequelae.

    OBJECTIVES: To determine the effect of continuous distending pressure in the form of CPAP on the need for IPPV and associated morbidity in spontaneously breathing preterm infants with respiratory distress.

    SEARCH METHODS: We used the standard strategy of Cochrane Neonatal to search CENTRAL (2020, Issue 6); Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions; and CINAHL on 30 June 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.

    SELECTION CRITERIA: All randomised or quasi-randomised trials of preterm infants with respiratory distress were eligible. Interventions were CPAP by mask, nasal prong, nasopharyngeal tube or endotracheal tube, compared with spontaneous breathing with supplemental oxygen as necessary.

    DATA COLLECTION AND ANALYSIS: We used standard methods of Cochrane and its Neonatal Review Group, including independent assessment of risk of bias and extraction of data by two review authors. We used the GRADE approach to assess the certainty of evidence. Subgroup analyses were planned on the basis of birth weight (greater than or less than 1000 g or 1500 g), gestational age (groups divided at about 28 weeks and 32 weeks), timing of application (early versus late in the course of respiratory distress), pressure applied (high versus low) and trial setting (tertiary compared with non-tertiary hospitals; high income compared with low income) MAIN RESULTS: We included five studies involving 322 infants; two studies used face mask CPAP, two studies used nasal CPAP and one study used endotracheal CPAP and continuing negative pressure for a small number of less ill babies. For this update, we included one new trial. CPAP was associated with lower risk of treatment failure (death or use of assisted ventilation) (typical risk ratio (RR) 0.64, 95% confidence interval (CI) 0.50 to 0.82; typical risk difference (RD) -0.19, 95% CI -0.28 to -0.09; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 4 to 11; I2 = 50%; 5 studies, 322 infants; very low-certainty evidence), lower use of ventilatory assistance (typical RR 0.72, 95% CI 0.54 to 0.96; typical RD -0.13, 95% CI -0.25 to -0.02; NNTB 8, 95% CI 4 to 50; I2 = 55%; very low-certainty evidence) and lower overall mortality (typical RR 0.53, 95% CI 0.34 to 0.83; typical RD -0.11, 95% CI -0.18 to -0.04; NNTB 9, 95% CI 2 to 13; I2 = 0%; 5 studies, 322 infants; moderate-certainty evidence). CPAP was associated with increased risk of pneumothorax (typical RR 2.48, 95% CI 1.16 to 5.30; typical RD 0.09, 95% CI 0.02 to 0.16; number needed to treat for an additional harmful outcome (NNTH) 11, 95% CI 7 to 50; I2 = 0%; 4 studies, 274 infants; low-certainty evidence). There was no evidence of a difference in bronchopulmonary dysplasia, defined as oxygen dependency at 28 days (RR 1.04, 95% CI 0.35 to 3.13; I2 = 0%; 2 studies, 209 infants; very low-certainty evidence). The trials did not report use of surfactant, intraventricular haemorrhage, retinopathy of prematurity, necrotising enterocolitis and neurodevelopment outcomes in childhood.

    AUTHORS' CONCLUSIONS: In preterm infants with respiratory distress, the application of CPAP is associated with reduced respiratory failure, use of mechanical ventilation and mortality and an increased rate of pneumothorax compared to spontaneous breathing with supplemental oxygen as necessary. Three out of five of these trials were conducted in the 1970s. Therefore, the applicability of these results to current practice is unclear. Further studies in resource-poor settings should be considered and research to determine the most appropriate pressure level needs to be considered.

    Matched MeSH terms: Bronchopulmonary Dysplasia/etiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links