Displaying all 5 publications

Abstract:
Sort:
  1. Rayegan S, Dehpour AR, Sharifi AM
    Metab Brain Dis, 2017 02;32(1):41-49.
    PMID: 27476541 DOI: 10.1007/s11011-016-9883-1
    Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.
    Matched MeSH terms: Atorvastatin Calcium/pharmacology*
  2. Loch A, Bewersdorf JP, Kofink D, Ismail D, Abidin IZ, Veriah RS
    BMC Res Notes, 2017 Jul 17;10(1):291.
    PMID: 28716156 DOI: 10.1186/s13104-017-2617-6
    BACKGROUND: In a world of ever increasing health care costs, generic drugs represent a major opportunity to ensure access to essential medicines for people who otherwise would be unable to afford them. However, some clinicians and patients are still questioning the safety and effectiveness of generic formulations compared to the proprietary drugs necessitating further systematic research analyzing the generic drugs' efficacy. Our objective was to compare the lipid lowering effects of generic and branded atorvastatin.

    METHODS: This cross-sectional, retrospective cohort study was conducted at the University of Malaya Medical Centre from 1 May 2013 until 30 May 2013. We analyzed the lipid profiles (total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides) of 629 patients before and at least 3 months after switching them from proprietary atorvastatin (Lipitor®) to generic atorvastatin (atorvastatin calcium from Ranbaxy Laboratories, Inc.). We also investigated if there was any difference in the effectiveness of both atorvastatin formulations in various ethnic groups.

    RESULTS: 266 patients were included in this study. When comparing the median values we found no statistically significant differences (Wilcoxon signed-rank test; p atorvastatin in lowering total cholesterol (4.60 mmol/l pre-transition vs. 4.50 mmol/l post-transition; p = 0.583), LDL-cholesterol (2.42 mmol/l vs. 2.41 mmol/l; p = 0.923) and triglycerides (1.50 mmol/l vs. 1.50 mmol/l; p = 0.513). While there was a statistically significant (p = 0.009) difference in HDL-cholesterol levels favouring proprietary atorvastatin, the extent of this change (1.26 mmol/l vs. 1.25 mmol/l) was deemed not to be clinically relevant. There was no statistically significant difference when analyzing the effects on various ethnic groups.

    CONCLUSIONS: Substituting proprietary atorvastatin for its generic formulation atorvastatin calcium does not result in a less effective management of hyperlipidemia. Our findings lend support to the approach of lowering health care costs by switching patients from branded drugs to their less expensive generic analogues.

    Matched MeSH terms: Atorvastatin Calcium/pharmacology*
  3. Alfarisi HAH, Ibrahim MB, Mohamed ZBH, Azahari N, Hamdan AHB, Che Mohamad CA
    ScientificWorldJournal, 2020;2020:4503253.
    PMID: 33132768 DOI: 10.1155/2020/4503253
    Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide with no curative therapy. The aim of this study was to investigate the hepatoprotective effects of a novel Trihoney against biochemical and histological manifestations of NAFLD in hypercholesterolemic rabbits. Methodology. Forty-eight male New Zealand white (NZW) rabbits were grouped into normal diet (C), normal diet with 0.6 g/kg/day of Trihoney (C + H), 1% cholesterol diet (HCD), 1% cholesterol diet with 0.3 g/kg/day of Trihoney (HCD + H1), 1% cholesterol diet with 0.6 g/kg/day of Trihoney (HCD + H2), and 1% cholesterol diet with 2 mg/kg/day of atorvastatin (HCD + At.). Animals were sacrificed after 12 weeks of treatment. Serum lipids and liver function test (LFT) were measured prior to and at the endpoint of the experiment for total cholesterol (TC), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and total bilirubin (T. Bil.). Liver was processed for histopathology study. Liver homogenate was analysed for oxidative stress parameters: superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Results. Lipid analysis approved the induction of hypercholesterolemia. A significant elevation (p < 0.01) of serum AST and ALT levels showed by the HCD group was compared to C and C + H groups. Trihoney exhibited a significant reduction (p < 0.001) of AST and ALT compared to the HCD group. Likewise, AST and ALT reduced significantly in the HCD + At. group (p < 0.001). Trihoney supplementation induced significant (p < 0.05) enhancement of SOD and GPx activities. Atorvastatin treatment was associated with significant (p < 0.05) reduction of SOD and GPx activities in the liver. Trihoney and atorvastatin showed marked (p < 0.001) reduction of hepatic lipid peroxidation. Trihoney showed histological protection against progression of NAFLD to nonalcoholic steatohepatitis (NASH). Atorvastatin exhibited no beneficial impact on hepatic architecture. Conclusion. Trihoney was able to maintain normal liver function and showed hepatoprotection against progression of NAFLD to NASH probably through hypocholesterolaemic and antioxidant functions.
    Matched MeSH terms: Atorvastatin Calcium/pharmacology
  4. Hosseinzadeh A, Bahrampour Juybari K, Kamarul T, Sharifi AM
    J Physiol Biochem, 2019 Jun;75(2):153-162.
    PMID: 30796627 DOI: 10.1007/s13105-019-00666-8
    The high glucose concentration is able to disturb chondrocyte homeostasis and contribute to OA pathogenesis. This study was designed to investigate the protective effects of atorvastatin (ATO) on high glucose (HG)-mediated oxidative stress and mitochondrial apoptosis in C28I2 human chondrocytes. The protective effect of ATO (0.01 and 0.1 μM) on HG (75 mM)-induced oxidative stress and apoptosis was evaluated in C28I2 cells. The effects of ATO on HG-induced intracellular ROS production and lipid peroxidation were detected and the protein expression levels of Bax, Bcl-2, caspase-3, total and phosphorylated JNK and P38 MAPKs were analyzed by Western blotting. The mRNA expression levels of antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. Pretreatment with ATO remarkably increased the gene expression levels of antioxidant enzymes and reduced HG-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. Atorvastatin could considerably reduce HG-induced oxidative stress and mitochondrial apoptosis through increasing the expression of antioxidant enzymes. Atorvastatin may be considered as a promising agent to prevent high glucose-induced cartilage degradation in OA patients.
    Matched MeSH terms: Atorvastatin Calcium/pharmacology*
  5. Ahmad Nazri KA, Haji Mohd Saad Q, Mohd Fauzi N, Buang F, Jantan I, Jubri Z
    Pharm Biol, 2021 Dec;59(1):1203-1215.
    PMID: 34493166 DOI: 10.1080/13880209.2021.1970199
    CONTEXT: Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects.

    OBJECTIVE: This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet.

    MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months.

    RESULTS: In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p 

    Matched MeSH terms: Atorvastatin Calcium/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links