The increase in the incidence of the radiation-induced skin injury cases and the absence of standard treatments escalate the interest in finding new and effective drugs for these lesions. We studied the effect of a 40% solution of arginine glutamate on the healing of radiation-induced skin ulcers in guinea pigs.
The aim of the present study was to determine the role of cyclic adenosine monophosphate (cAMP) on arginase activity in a murine macrophage cell line (RAW264.7 cells) stimulated with lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans.
To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.
Nitric oxide (NO) is involved in many pathophysiological processes in the brain. NO is synthesized from arginine by nitric oxide synthase (NOS) enzymes. Citrulline formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) via the citrulline-NO cycle. Hyperammonemia is known to cause poorly understood perturbations of the citrulline-NO cycle. To understand the role of citrulline-NO cycle in hyperammonemia, NOS, ASS, ASL and arginase activities, as well as nitrate/nitrite (NOx), arginine, ornithine, citrulline, glutamine, glutamate and GABA were estimated in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats subjected to acute ammonia toxicity. NOx concentration and NOS activity were found to increase in all the regions of brain in acute ammonia toxicity. The activities of ASS and ASL showed an increasing trend whereas the arginase was not changed. The results of this study clearly demonstrated the increased formation of NO, suggesting the involvement of NO in the pathophysiology of acute ammonia toxicity. The increased activities of ASS and ASL suggest the increased and effective recycling of citrulline to arginine in acute ammonia toxicity, making NO production more effective and contributing to its toxic effects.