Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA
    J Agric Food Chem, 2020 Jul 15;68(28):7281-7297.
    PMID: 32551569 DOI: 10.1021/acs.jafc.0c01916
    Glucosinolates (GSLs) are plant secondary metabolites comprising sulfur and nitrogen mainly found in plants from the order of Brassicales, such as broccoli, cabbage, and Arabidopsis thaliana. The activated forms of GSL play important roles in fighting against pathogens and have health benefits to humans. The increasing amount of data on A. thaliana generated from various omics technologies can be investigated more deeply in search of new genes or compounds involved in GSL biosynthesis and metabolism. This review describes a comprehensive inventory of A. thaliana GSLs identified from published literature and databases such as KNApSAcK, KEGG, and AraCyc. A total of 113 GSL genes encoding for 23 transcription components, 85 enzymes, and five protein transporters were experimentally characterized in the past two decades. Continuous efforts are still on going to identify all molecules related to the production of GSLs. A manually curated database known as SuCCombase (http://plant-scc.org) was developed to serve as a comprehensive GSL inventory. Realizing lack of information on the regulation of GSL biosynthesis and degradation mechanisms, this review also includes relevant information and their connections with crosstalk among various factors, such as light, sulfur metabolism, and nitrogen metabolism, not only in A. thaliana but also in other crucifers.
    Matched MeSH terms: Arabidopsis/genetics; Arabidopsis/metabolism*; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism
  2. Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM
    Metabolomics, 2018 01 31;14(3):25.
    PMID: 30830336 DOI: 10.1007/s11306-018-1317-0
    INTRODUCTION: WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.

    OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.

    METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.

    RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.

    CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.

    Matched MeSH terms: Arabidopsis/metabolism*; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism*
  3. Martí Ruiz MC, Hubbard KE, Gardner MJ, Jung HJ, Aubry S, Hotta CT, et al.
    Nat Plants, 2018 Sep;4(9):690-698.
    PMID: 30127410 DOI: 10.1038/s41477-018-0224-8
    In the last decade, the view of circadian oscillators has expanded from transcriptional feedback to incorporate post-transcriptional, post-translational, metabolic processes and ionic signalling. In plants and animals, there are circadian oscillations in the concentration of cytosolic free Ca2+ ([Ca2+]cyt), though their purpose has not been fully characterized. We investigated whether circadian oscillations of [Ca2+]cyt regulate the circadian oscillator of Arabidopsis thaliana. We report that in Arabidopsis, [Ca2+]cyt circadian oscillations can regulate circadian clock function through the Ca2+-dependent action of CALMODULIN-LIKE24 (CML24). Genetic analyses demonstrate a linkage between CML24 and the circadian oscillator, through pathways involving the circadian oscillator gene TIMING OF CAB2 EXPRESSION1 (TOC1).
    Matched MeSH terms: Arabidopsis/genetics; Arabidopsis/metabolism; Arabidopsis/physiology*; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism
  4. Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H
    Plant Physiol, 2015 Sep;169(1):391-402.
    PMID: 26152712 DOI: 10.1104/pp.15.00943
    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process.
    Matched MeSH terms: Arabidopsis/embryology; Arabidopsis/genetics; Arabidopsis/metabolism*; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism*
  5. Yeang HY
    Ann Bot, 2015 Jul;116(1):15-22.
    PMID: 26070640 DOI: 10.1093/aob/mcv070
    BACKGROUND AND AIMS: An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm.

    METHODS: Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles.

    KEY RESULTS: Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle.

    CONCLUSIONS: Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod.

    Matched MeSH terms: Arabidopsis/genetics*; Arabidopsis/physiology*; Arabidopsis/radiation effects; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism
  6. Priya R, Sneha P, Rivera Madrid R, Doss CGP, Singh P, Siva R
    J Cell Biochem, 2017 09;118(9):2712-2721.
    PMID: 28145590 DOI: 10.1002/jcb.25919
    Carotenoid cleavage dioxygenase (CCD) gene, ubiquitously found in numerous types of plants, are eminent in synthesizing the various volatile compounds (β-ionone, C13-norisoprenoid, geranylacetone) known as apocarotenoids. These apocarotenoids have various biological functions such as volatile signals, allelopathic interaction and plant defense. In Arabidopsis genome sequence, four potential CCD genes have been identified namely CCD1, CCD4, CCD7, and CCD8. These four genes give rise to diverse biological functions with almost similar sequence identity. In this investigation, an in silico analysis was proposed to study CCD proteins in Arabidopsis thaliana, aiming at constructing three-dimensional (3D) structure for CCD1 proteins of Bixa orellana and Crocus sativus to observe the structural difference among AtCCD (A. thaliana CCD) proteins. The quality of modeled structures was evaluated using RAMPAGE, PSVS protein validation server and Q Mean server. Finally, we utilised molecular dynamics simulation to identify the stability of the predicted CCD protein structures. The molecular dynamic simulation also revealed that AtCCD4 protein showed lesser stability when compared to other CCD proteins. Overall results from molecular dynamics analysis predicted that BoCCD1, CsCCD1, and AtCCD1 show similar structural characteristics. J. Cell. Biochem. 118: 2712-2721, 2017. © 2017 Wiley Periodicals, Inc.
    Matched MeSH terms: Arabidopsis/enzymology*; Arabidopsis Proteins/chemistry*
  7. Saelim L, Akiyoshi N, Tan TT, Ihara A, Yamaguchi M, Hirano K, et al.
    J Plant Res, 2019 Jan;132(1):117-129.
    PMID: 30478480 DOI: 10.1007/s10265-018-1074-1
    The cell wall determines morphology and the environmental responses of plant cells. The primary cell wall (PCW) is produced during cell division and expansion, determining the cell shape and volume. After cell expansion, specific types of plant cells produce a lignified wall, known as a secondary cell wall (SCW). We functionally analyzed Group IIId Arabidopsis AP2/EREBP genes, namely ERF34, ERF35, ERF38, and ERF39, which are homologs of a rice ERF gene previously proposed to be related to SCW biosynthesis. Expression analysis revealed that these four genes are expressed in regions related to cell division and/or cell differentiation in seedlings (i.e., shoot apical meristems, the primordia of leaves and lateral roots, trichomes, and central cylinder of primary roots) and flowers (i.e., vascular tissues of floral organs and replums and/or valve margins of pistils). Overexpression of ERF genes significantly upregulated PCW-type, but not SCW-type, CESA genes encoding cellulose synthase catalytic subunits in Arabidopsis seedlings. Transient co-expression reporter analysis indicated that ERF35, ERF38, and ERF39 possess transcriptional activator activity, and that ERF34, ERF35, ERF38, and ERF39 upregulated the promoter activity of CESA1, a PCW-type CESA gene, through the DRECRTCOREAT elements, the core cis-acting elements known to be recognized by AP2/ERF proteins. Together, our findings show that Group IIId ERF genes are positive transcriptional regulators of PCW-type CESA genes in Arabidopsis and are possibly involved in modulating cellulose biosynthesis in response to developmental requirements and environmental stimuli.
    Matched MeSH terms: Arabidopsis/genetics*; Arabidopsis/metabolism; Arabidopsis Proteins/metabolism; Arabidopsis Proteins/chemistry
  8. Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, et al.
    Int J Mol Sci, 2021 Jun 07;22(11).
    PMID: 34200446 DOI: 10.3390/ijms22116160
    Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
    Matched MeSH terms: Arabidopsis/genetics; Arabidopsis/metabolism*; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism*
  9. Sukiran NL, Ma JC, Ma H, Su Z
    Plant Mol Biol, 2019 Jan;99(1-2):161-174.
    PMID: 30604322 DOI: 10.1007/s11103-018-0810-1
    KEY MESSAGE: Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
    Matched MeSH terms: Arabidopsis/genetics*; Arabidopsis/growth & development; Arabidopsis/physiology; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism*
  10. Tsuji Y, Vanholme R, Tobimatsu Y, Ishikawa Y, Foster CE, Kamimura N, et al.
    Plant Biotechnol J, 2015 Aug;13(6):821-32.
    PMID: 25580543 DOI: 10.1111/pbi.12316
    Bacteria-derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram-negative bacterium Sphingobium sp. SYK-6 possesses a Cα-dehydrogenase (LigD) enzyme that has been shown to oxidize the α-hydroxy functionalities in β-O-4-linked dimers into α-keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β-O-4-linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol-β-coniferyl alcohol ether and syringylglycerol-β-sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon-optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC-MS/MS-based metabolite profiling indicated that levels of oxidized guaiacyl (G) β-O-4-coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1- to 2.8-fold increased level of G-type α-keto-β-O-4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.
    Matched MeSH terms: Arabidopsis/enzymology; Arabidopsis/metabolism*
  11. Goh HH, Sloan J, Malinowski R, Fleming A
    J Plant Physiol, 2014 Feb 15;171(3-4):329-39.
    PMID: 24144490 DOI: 10.1016/j.jplph.2013.09.009
    Expansins have long been implicated in the control of cell wall extensibility. However, despite ample evidence supporting a role for these proteins in the endogenous mechanism of plant growth, there are also examples in the literature where the outcome of altered expansin gene expression is difficult to reconcile with a simplistic causal linkage to growth promotion. To investigate this problem, we report on the analysis of transgenic Arabidopsis plants in which a heterologous cucumber expansin can be inducibly overexpressed. Our results indicate that the effects of expansin expression on growth depend on the degree of induction of expansin expression and the developmental pattern of organ growth. They support the role of expansin in directional cell expansion. They are also consistent with the idea that excess expansin might itself impede normal activities of cell wall modifications, culminating in both growth promotion and repression depending on the degree of expression.
    Matched MeSH terms: Arabidopsis/metabolism*; Arabidopsis/physiology
  12. Abd-Hamid NA, Ismail I
    J Plant Physiol, 2024 Sep;300:154299.
    PMID: 38936241 DOI: 10.1016/j.jplph.2024.154299
    The F-box protein (FBP) family plays diverse functions in the plant kingdom, with the function of many members still unrevealed. In this study, a specific FBP called PmFBK2, containing Kelch repeats from Persicaria minor, was functionally investigated. Employing the yeast two-hybrid (Y2H) assay, PmFBK2 was found to interact with Skp1-like proteins from P. minor, suggesting its potential to form an E3 ubiquitin ligase, known as the SCF complex. Y2H and co-immunoprecipitation tests revealed that PmFBK2 interacts with full-length PmGID1b. The interaction marks the first documented binding between these two protein types, which have never been reported in other plants before, and they exhibited a negative effect on gibberellin (GA) signal transduction. The overexpression of PmFBK2 in the kmd3 mutant, a homolog from Arabidopsis, demonstrated the ability of PmFBK2 to restore the function of the mutated KMD3 gene. The function restoration was supported by morphophysiological and gene expression analyses, which exhibited patterns similar to the wild type (WT) compared to the kmd3 mutant. Interestingly, the overexpression of PmFBK2 or PmGID1b in Arabidopsis had opposite effects on rosette diameter, seed weight, and plant height. This study provides new insights into the complex GA signalling. It highlights the crucial roles of the interaction between FBP and the GA receptor (GID1b) in regulating GA responses. These findings have implications for developing strategies to enhance plant growth and yield by modulating GA signalling in crops.
    Matched MeSH terms: Arabidopsis/genetics; Arabidopsis/metabolism
  13. Mohamed ME, Pahirulzaman KA, Lazarus CM
    Mol Biotechnol, 2016 Mar;58(3):172-8.
    PMID: 26718544 DOI: 10.1007/s12033-015-9911-0
    Pyrethrins are natural insecticides, which accumulate to high concentrations in pyrethrum (Chrysanthemum cinerariaefolium) flowers. Synthetic pyrethroids are more stable, more efficacious and cheaper, but contemporary requirements for safe and environmentally friendly pesticides encourage a return to the use of natural pyrethrins, and this would be favoured by development of an efficient route to their production by microbial fermentation. The biosynthesis of pyrethrins involves ester linkage between an acid moiety (chrysanthemoyl or pyrethroyl, synthesised via the mevalonic acid pathway from glucose), and an alcohol (pyrethrolone). Pyrethrolone is generated from 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid, which originates from α-linolenic acid via the jasmonic acid biosynthetic cascade. The first four genes in this cascade, encoding lipoxygenase 2, allene-oxide synthase, allene-oxide cyclase 2 and 12-oxophytodienoic acid reductase 3, were amplified from an Arabidopsis thaliana cDNA library, cloned in a purpose-built fungal multigene expression vector and expressed in Aspergillus oryzae. HPLC-MS analysis of the transgenic fungus homogenate gave good evidence for the presence of 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid.
    Matched MeSH terms: Arabidopsis/enzymology*; Arabidopsis/genetics; Arabidopsis Proteins/genetics*; Arabidopsis Proteins/metabolism
  14. Wasano N, Takemura T, Ismil R, Bakar B, Fujii Y
    Nat Prod Commun, 2015 May;10(5):725-7.
    PMID: 26058144
    Goniothalamin produced by the Malaysian medicinal plant, Goniothalamus andersonii J. Sinclair, strongly inhibits plant growth. However, its mode of action has not been characterized at the gene expression level. We conducted DNA microarray assay to analyze the changes in early gene responses of Arabidopsis thaliana seedlings. After a 6-h exposure to goniothalamin, we observed an upregulation of genes highly associated with heat response, and 22 heat shock protein (AtHSP) genes were upregulated more than 50 fold. Together with these genes, we observed upregulation of the genes related to oxidative stress and protein folding. Also, the genes related to cell wall modification and cell growth, expansin (AtEXPA) genes, were significantly downregulated. The results suggested that goniothalamin induces oxidative stresses and inhibits the expression of cell wall-associated proteins resulting in growth inhibition of Arabidopsis seedlings.
    Matched MeSH terms: Arabidopsis/drug effects*; Arabidopsis/genetics; Arabidopsis/growth & development*; Arabidopsis/metabolism; Arabidopsis Proteins/genetics*; Arabidopsis Proteins/metabolism
  15. Zuther E, Lee YP, Erban A, Kopka J, Hincha DK
    Adv Exp Med Biol, 2018 10 6;1081:81-98.
    PMID: 30288705 DOI: 10.1007/978-981-13-1244-1_5
    During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed.
    Matched MeSH terms: Arabidopsis; Arabidopsis Proteins
  16. Yeang HY
    Yale J Biol Med, 2019 06;92(2):213-223.
    PMID: 31249482
    The widely held explanation for photoperiod-controlled flowering in long-day plants is largely embodied in the External Coincidence Hypothesis which posits that flowering is induced when activity of a rhythmic gene that regulates it (a putative "flowering gene") occurs in the presence of light. Nevertheless, re-examination of the Arabidopsis flowering data from non 24-hour cycles of Roden et al. suggests that External Coincidence is not tenable if the circadian rhythm of the "flowering gene" were entrained to sunrise as commonly accepted. On the other hand, the hypothesis is supported if circadian cycling of the gene conforms to a solar rhythm, and its entrainment is to midnight on the solar clock. Data available point to flowering being induced by the gene which peaks in its expression between 16 to 19 h after midnight. In the normal 24 h cycle, that would be between 4 p.m. and 7 p.m., regardless of the photoperiod. Such timing of the "flowering gene" expression allows for variable coincidence between gene activity and light, depending on the photoperiod and cycle period. A correlation is found between earliness of flowering and the degree of coincidence of "flowering gene" expression with light (r = 0.88, p<0.01).
    Matched MeSH terms: Arabidopsis/genetics*; Arabidopsis Proteins/genetics
  17. Huang W, Chen X, Guan Q, Zhong Z, Ma J, Yang B, et al.
    Gene, 2019 Mar 20;689:43-50.
    PMID: 30528270 DOI: 10.1016/j.gene.2018.11.083
    Atmospheric CO2 level is one of the most important factors which affect plant growth and crop production. Although many crucial genes and pathways have been identified in response to atmospheric CO2 changes, the integrated and precise mechanisms of plant CO2 response are not well understood. Alternative splicing (AS) is an important gene regulation process that affects many biological processes in plants. However, the AS pattern changes in plants in response to elevated CO2 levels have not yet been investigated. Here, we used RNA-Seq data of Arabidopsis thaliana grown under different CO2 concentration to analyze the global changes in AS. We found that AS increased with the rise in CO2 concentration. Additionally, we identified 345 differentially expressed (DE) genes and 251 differentially alternative splicing (DAS) genes under the elevated CO2 condition. Moreover, the results showed that the expression of most of the DAS genes did not change significantly, indicating that AS can serve as an independent mechanism for gene regulation in response to elevated CO2. Furthermore, our analysis of function categories revealed that the DAS genes were associated mainly with the stimulus response. Overall, this the first study to explore the changes of AS in plants in response to elevated CO2.
    Matched MeSH terms: Arabidopsis/drug effects*; Arabidopsis/genetics*; Arabidopsis/growth & development*
  18. Harumain ZA, Parker HL, Muñoz García A, Austin MJ, McElroy CR, Hunt AJ, et al.
    Environ Sci Technol, 2017 03 07;51(5):2992-3000.
    PMID: 28191957 DOI: 10.1021/acs.est.6b04821
    Although a promising technique, phytoextraction has yet to see significant commercialization. Major limitations include metal uptake rates and subsequent processing costs. However, it has been shown that liquid-culture-grown Arabidopsis can take up and store palladium as nanoparticles. The processed plant biomass has catalytic activity comparable to that of commercially available catalysts, creating a product of higher value than extracted bulk metal. We demonstrate that the minimum level of palladium in Arabidopsis dried tissues for catalytic activity comparable to commercially available 3% palladium-on-carbon catalysts was achieved from dried plant biomass containing between 12 and 18 g·kg-1 Pd. To advance this technology, species suitable for in-the-field application: mustard, miscanthus, and 16 willow species and cultivars, were tested. These species were able to grow, and take up, palladium from both synthetic and mine-sourced tailings. Although levels of palladium accumulation in field-suitable species are below that required for commercially available 3% palladium-on-carbon catalysts, this study both sets the target, and is a step toward, the development of field-suitable species that concentrate catalytically active levels of palladium. Life cycle assessment on the phytomining approaches described here indicates that the use of plants to accumulate palladium for industrial applications has the potential to decrease the overall environmental impacts associated with extracting palladium using present-day mining processes.
    Matched MeSH terms: Arabidopsis
  19. Ilias IA, Airianah OB, Baharum SN, Goh HH
    Data Brief, 2017 Dec;15:320-323.
    PMID: 29214193 DOI: 10.1016/j.dib.2017.09.050
    Expansin increases cell wall extensibility to allow cell wall loosening and cell expansion even in the absence of hydrolytic activity. Previous studies showed that excessive overexpression of expansin gene resulted in defective growth (Goh et al., 2014; Rochange et al., 2001) [1,2] and altered cell wall chemical composition (Zenoni et al., 2011) [3]. However, the molecular mechanism on how the overexpression of non-enzymatic cell wall protein expansin can result in widespread effects on plant cell wall and organ growth remains unclear. We acquired transcriptomic data on previously reported transgenic Arabidopsis line (Goh et al., 2014) [1] to investigate the effects of overexpressing a heterologus cucumber expansin gene (CsEXPA1) on the global gene expression pattern during early and late phases of etiolated hypocotyl growth.
    Matched MeSH terms: Arabidopsis
  20. Yeang HY
    J Exp Bot, 2013 Jul;64(10):2643-52.
    PMID: 23645867 DOI: 10.1093/jxb/ert130
    In photoperiodic flowering, long-day (LD) plants are induced to flower seasonally when the daylight hours are long, whereas flowering in short-day (SD) plants is promoted under short photoperiods. According to the widely accepted external coincidence model, flowering occurs in LD Arabidopsis when the circadian rhythm of the gene CONSTANS (CO) peaks in the afternoon, when it is light during long days but dark when the days are short. Nevertheless, extending this explanation to SD flowering in rice, Oriza sativa, requires LD and SD plants to have 'opposite light requirements' as the CO orthologue in rice, HEADING-DATE1 (Hd1), promotes flowering only under short photoperiods. This report proposes a role of the plant's solar rhythm in promoting seasonal flowering. The interaction between rhythmic genes entrained to the solar clock and those entrained to the circadian clock form the basis of an internal coincidence model that explains both LD and SD flowering equally well. The model invokes no presumption of opposite light requirements between LD and SD plants, and further argues against any specific requirement of either light or darkness for SD flowering. Internal coincidence predicts the inhibition of SD flowering of the rice plant by a night break (a brief interruption of light), while it also provides a plausible explanation for how a judiciously timed night break promotes Arabidopsis flowering even on short days. It is the timing of the light transitions (sunrise and sunset) rather than the duration of light or darkness per se that regulates photoperiod-controlled flowering.
    Matched MeSH terms: Arabidopsis/genetics; Arabidopsis/growth & development; Arabidopsis/metabolism; Arabidopsis/radiation effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links