METHODS: Subjects were divided into two age groups-32 ± 2 (young) and 52 ± 2 (old) years old. Four subjects from each group were assigned with TRF (78% tocotrienol and 22% tocopherol, 150 mg/day) or placebo capsules for 6 months. Fasting plasma were obtained at 0, 3, and 6 months. Plasma tocopherol and tocotrienol levels were determined. Plasma proteome was resolved by 2DE, and differentially expressed proteins identified by MS. The expressions of three proteins were validated by Western blotting.
RESULTS: Six months of TRF supplementation significantly increased plasma levels of tocopherols and tocotrienols. Proteins identified as being differentially expressed were related to cholesterol homeostasis, acute-phase response, protease inhibitor, and immune response. The expressions of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor were validated. The old groups showed more proteins changing in expression.
CONCLUSIONS: TRF appears to not only affect plasma levels of tocopherols and tocotrienols, but also the levels of plasma proteins. The identity of these proteins may provide insights into how TRF exerts its beneficial effects. They may also be potentially developed into biomarkers for the study of the effects and effectiveness of TRF supplementation.
Methods: This study comprised of two phases namely discovery and verification. In the discovery phase, proteins in the pooled plasma samples from young male adults between 18 and 45 years (10 AMI patients and 10 controls) were separated using two-dimensional electrophoresis. The protein spots that were expressed differently in the AMI patients were identified via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. The plasma concentrations of these proteins were quantified using enzyme-linked immunosorbent assay during the verification phase (40 AMI patients and 80 controls).
Results: Haptoglobin (Hp), apolipoprotein AI (Apo AI) and apolipoprotein AIV (Apo AIV) were up-regulated in the discovery phase. In the verification phase, the plasma concentration of Hp was significantly higher in AMI patients than the controls (P < 0.001). Logistic regression showed an association between Hp and AMI in young adults (odds ratio [OR] = 1.016, 95% CI: 1.002-1.030, P = 0.025) independent of other AMI risk factors. Hp was significantly correlated with high sensitivity C-reactive protein (hs-CRP) (r = 0.424, P < 0.001).
Conclusion: In young adults with AMI, plasma Hp concentrations were elevated and it is independently associated with AMI. A positive correlation with hs-CRP suggests Hp could be a potential biomarker of AMI in young adults.