RESULTS: The yield of DFG obtained in this study was 7.01 ± 0.31%. High-performance liquid chromatography analysis indicated that the imino acid content was slightly lower for DFG compared with BG (P < 0.05). Differences in molecular size and amino acids between DFG and BG were also observed. The isoelectric points of DFG and BG were at pH 8 and 5 respectively, and the overall protein solubility of BG was higher than that of DFG. Gels prepared from BG exhibited higher bloom strength, viscosity and clarity and were darker in colour compared with DFG gels (P < 0.05). The gelling and melting points of BG were 21.8 and 29.47 °C respectively, while those of DFG were 20.5 and 27.8 °C respectively. BG exhibited slightly better emulsifying and foaming properties compared with DFG.
CONCLUSION: Although some differences between DFG and BG were observed, the disparities were small, which indicates that DFG could be exploited commercially as an alternative source of gelatin. © 2016 Society of Chemical Industry.
RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P amino acids and organic acids were found in ZF. An additional four metabolites clustered as C-glycosylflavonoids were discovered from MS/MS-based molecular networking.
CONCLUSION: Chemical profiles of non-organic and organic soybeans exhibited no significant difference. However, the metabolite profile of the unfermented soybeans, which were higher in sugars, shifted to higher amino acid and organic acid content after fermentation, thereby potentially enhancing their nutritional value. © 2022 Society of Chemical Industry.