Displaying all 14 publications

Abstract:
Sort:
  1. Teo WF, Wee WY, Choo SW, Tan GY
    Mar Genomics, 2015 Apr;20:11-2.
    PMID: 25554669 DOI: 10.1016/j.margen.2014.12.006
    The bacterium strain SE31, a member of the genus Sciscionella, was isolated from intertidal sediments collected from Cape Rachado, Malaysia. The high quality draft genome sequence of Sciscionella strain SE31 with a genome size of approximately 7.4 Mbp is reported. Preliminary analysis revealed 46 putative gene clusters involved in the biosynthesis of secondary metabolites and 113 putative genes that are associated with bacterial virulence, disease and defense. Availability of the genome sequence of Sciscionella SE31 will contribute to a better understanding of the genus Sciscionella.
    Matched MeSH terms: Actinobacteria/genetics*
  2. Muramatsu H, Murakami R, Ibrahim ZH, Murakami K, Shahab N, Nagai K
    J Antibiot (Tokyo), 2011 Sep;64(9):621-4.
    PMID: 21792208 DOI: 10.1038/ja.2011.57
    Matched MeSH terms: Actinobacteria/genetics*
  3. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B, Goodfellow M
    Extremophiles, 2018 Jan;22(1):47-57.
    PMID: 29101684 DOI: 10.1007/s00792-017-0976-5
    The data reported in this paper are among the first relating to the microbiology of hyper-arid, very high altitude deserts and they provide base line information on the structure of actinobacterial communities. The high mountain Cerro Chajnantor landscape of the Central Andes in northern Chile is exposed to the world's most intense levels of solar radiation and its impoverished soils are severely desiccated. The purpose of this research was to define the actinobacterial community structures in soils at altitudes ranging from 3000 to 5000 m above sea level. Pyrosequencing surveys have revealed an extraordinary degree of microbial dark matter at these elevations that includes novel candidate actinobacterial classes, orders and families. Ultraviolet-B irradiance and a range of edaphic factors were found to be highly significant in determining community compositions at family and genus levels of diversity.
    Matched MeSH terms: Actinobacteria/genetics
  4. Loh WLC, Huang KC, Ng HS, Lan JC
    J Biosci Bioeng, 2020 Aug;130(2):187-194.
    PMID: 32334990 DOI: 10.1016/j.jbiosc.2020.03.007
    Carotenoids serve as one of the most important group of naturally-occurring lipid-soluble pigments which exhibit great biological activities such as antioxidant, anti-inflammatory and provitamin A activities. Owing to their advantageous health effects, carotenoids are widely applied in various industries. Microbial carotenoids synthesis therefore has attracted increasing attention in recent years. In the present study, a marine microorganism originally isolated from seawater in northern Taiwan was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The strain G. terrae TWRH01 has the ability to synthesize and accumulate the intracellular pigments was identified by gas chromatography-mass spectrometry (GC-MS). The biochemical production characteristics of this strain were studied by employing different fermentation strategies. Findings suggested that G. terrae TWRH01 can actively grow and efficiently synthesize carotenoids in medium adjusted to pH 7 containing 16 g L-1 sucrose as the carbon source, 16 g L-1 yeast extract as the nitrogen source, 0.6 M NaCl concentration, and supplemented with 0.45% (v/v) 1 M CaCl2. Results revealed that the optimization of fermentation yielded 15.29 g L-1 dry biomass and 10.58 μmol L-1 relative β-carotene concentration. According to GC-MS analysis, the orange-red colored pigments produced were identified as carotenoid derivatives, mainly echinenone and adonixanthin 3'-β-d-glucoside. Therefore, the new bacterial strain showed a highly potential bioresource for the commercial production of natural carotenoids.
    Matched MeSH terms: Actinobacteria/genetics
  5. Chong CS, Sabir DK, Lorenz A, Bontemps C, Andeer P, Stahl DA, et al.
    Appl Environ Microbiol, 2014 Nov;80(21):6601-10.
    PMID: 25128343 DOI: 10.1128/AEM.01818-14
    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.
    Matched MeSH terms: Actinobacteria/genetics*
  6. Learn-Han L, Yoke-Kqueen C, Shiran MS, Vui-Ling CM, Nurul-Syakima AM, Son R, et al.
    Genet. Mol. Res., 2012;11(1):277-91.
    PMID: 22370930 DOI: 10.4238/2012.February.8.3
    The diversity of specific bacteria taxa, such as the actinomycetes, has not been reported from the Antarctic island of Barrientos. The diversity of actinomycetes was estimated with two different strategies that use PCR-denaturing gradient gel electrophoresis. First, a PCR was applied, using a group-specific primer that allows selective amplification of actinomycete sequences. Second, a nested-PCR approach was used that allows the estimation of the relative abundance of actinomycetes within the bacterial community. Molecular identification, which was based on 16S rDNA sequence analysis, revealed eight genera of actinomycetes, Actinobacterium, Actinomyces, an uncultured Actinomycete, Streptomyces, Leifsonia, Frankineae, Rhodococcus, and Mycobacterium. The uncultured Actinomyces sp and Rhodococcus sp appear to be the prominent genera of actinomycetes in Barrientos Island soil. PCR-denaturing gradient gel electrophoresis patterns were used to look for correlations between actinomycete abundance and environmental characteristics, such as type of rookery and vegetation. There was a significant positive correlation between type of rookery and abundance of actinomycetes; soil samples collected from active chinstrap penguin rookeries had the highest actinomycete abundance. Vegetation type, such as moss, which could provide a microhabitat for bacteria, did not correlate significantly with actinomycete abundance.
    Matched MeSH terms: Actinobacteria/genetics*
  7. Nakajima Y, Ho CC, Kudo T
    J Gen Appl Microbiol, 2003 Jun;49(3):181-9.
    PMID: 12949699
    The taxonomic position of three actinomycete strains isolated from Malaysian soil was established by using a polyphasic approach. The isolates formed chains composed of four spores on the tip of sporophores branching from the aerial mycelium, and their chemotaxonomic properties were common to those of members of the family Streptosporangiaceae. These phenotypic properties as well as a phylogenetic analysis based on 16S rRNA gene sequences indicated that they should be classified in the genus Microtetraspora. The three isolates showed a unique pattern of cultural, physiological and biochemical properties that distinguished them from previously described species of the genus Microtetraspora. The isolates showed more than 72% DNA relatedness to each other, but only 58% or less relatedness to any previously described species. On the basis of the data presented, a new species of the genus Microtetraspora, Microtetraspora malaysiensis, is proposed. The type strain of the new species is strain H47-7(T) (=JCM 11278(T)=DSM 44579(T)).
    Matched MeSH terms: Actinobacteria/genetics
  8. Yong HS, Song SL, Eamsobhana P, Pasartvit A, Lim PE
    Mol Biol Rep, 2019 Aug;46(4):3765-3776.
    PMID: 31012029 DOI: 10.1007/s11033-019-04818-3
    Zeugodacus cucurbitae (Coquillet) is one of the most significant and widespread tephritid pest species of agricultural crops. This study reports the bacterial communities associated with Z. cucurbitae from three geographical regions in Southeast Asia (Thailand, Peninsular Malaysia, and Sarawak). The bacterial microbiota were investigated by targeted 16S rRNA gene (V3-V4 region) sequencing using the Illumina Mi-Seq platform. At 97% similarity and filtering at 0.001%, there were seven bacterial phyla and unassigned bacteria, comprising 11 classes, 23 orders, 39 families and 67 genera. The bacterial diversity and richness varied within and among the samples from the three geographical regions. Five phyla were detected for the Sarawak sample, and six each for the Thailand and Peninsular Malaysia samples. Four phyla-Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria-were represented in all the fruit fly specimens, forming the core members of the bacterial community. Proteobacteria was the predominant phylum, followed by Bacteroidetes, Firmicutes, and Actinobacteria. Fifty-three genera were represented in the Thailand sample, 56 in the Peninsular Malaysia sample, and 55 in the Sarawak sample. Forty-two genera were present in all the three geographical regions. The predominant core members were order Enterobacteriales (Proeteobacteria), and family Enterobacteriaceae (Enterobacteriales). Klebsiella (Enterobacteriaceae) was the predominant genus and K. oxytoca the predominant species with all specimens having > 10% relative abundance. The results indicate the presence of a great diversity as well as core members of the bacterial community associated with different populations of Z. cucurbitae.
    Matched MeSH terms: Actinobacteria/genetics
  9. Ng ZY, Tan GYA
    Antonie Van Leeuwenhoek, 2018 May;111(5):727-742.
    PMID: 29511956 DOI: 10.1007/s10482-018-1042-8
    Tioman Island is one of many sources for underexplored actinobacterial diversity in Malaysia. Selective isolation, molecular profiling, 16S rRNA gene sequencing and phylogenetic analyses were carried out to highlight the diversity of the marine actinobacterial community in a sediment collected off Tioman Island. A high number of diverse actinobacteria were recovered using skim milk/HEPES pre-treatment on a mannitol-based medium. A total of 123 actinobacterial strains were isolated, including thirty obligate marine actinobacteria putatively identified as Salinispora spp. Molecular fingerprinting profiles obtained with a double digestion approach grouped the remaining non-Salinispora-like strains into 24 different clusters, with Streptomyces and Blastococcus as the major clusters. A total of 17 strains were identified as novel actinobacterial species within the genera Streptomyces (n = 6), Blastococcus (n = 5), Marinactinospora (n = 3), Nocardiopsis (n = 1), Agromyces (n = 1) and Nonomuraea (n = 1) based on 16S rRNA gene sequence analyses. Polyphasic data from three putative Marinactinospora spp. showed that the strains represent a new genus in the Nocardiopsaceae family. Crude extracts from the strains were also found to inhibit the growth of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Providencia alcalifaciens) pathogens. Hierarchical clustering of the bioactivities of an active fraction revealed a unique profile, which is closely related that of fosfomycin.
    Matched MeSH terms: Actinobacteria/genetics
  10. Ong SM, Voo LY, Lai NS, Stark MJ, Ho CC
    J Appl Microbiol, 2007 Mar;102(3):680-92.
    PMID: 17309617
    To identify novel microbial inhibitors of protein phosphatase 1 (PP1).
    Matched MeSH terms: Actinobacteria/genetics
  11. Hamood Altowayti WA, Almoalemi H, Shahir S, Othman N
    Ecotoxicol Environ Saf, 2020 Dec 01;205:111267.
    PMID: 32992213 DOI: 10.1016/j.ecoenv.2020.111267
    Arsenic is a common contaminant in gold mine soil and tailings. Microbes present an opportunity for bio-treatment of arsenic, since it is a sustainable and cost-effective approach to remove arsenic from water. However, the development of existing bio-treatment approaches depends on isolation of arsenic-resistant microbes from arsenic contaminated samples. Microbial cultures are commonly used in bio-treatment; however, it is not established whether the structure of the cultured isolates resembles the native microbial community from arsenic-contaminated soil. In this milieu, a culture-independent approach using Illumina sequencing technology was used to profile the microbial community in situ. This was coupled with a culture-dependent technique, that is, isolation using two different growth media, to analyse the microbial population in arsenic laden tailing dam sludge based on the culture-independent sequencing approach, 4 phyla and 8 genera were identified in a sample from the arsenic-rich gold mine. Firmicutes (92.23%) was the dominant phylum, followed by Proteobacteria (3.21%), Actinobacteria (2.41%), and Bacteroidetes (1.49%). The identified genera included Staphylococcus (89.8%), Pseudomonas (1.25), Corynebacterium (0.82), Prevotella (0.54%), Megamonas (0.38%) and Sphingomonas (0.36%). The Shannon index value (3.05) and Simpson index value (0.1661) indicated low diversity in arsenic laden tailing. The culture dependent method exposed significant similarities with culture independent methods at the phylum level with Firmicutes, Proteobacteria and Actinobacteria, being common, and Firmicutes was the dominant phylum whereas, at the genus level, only Pseudomonas was presented by both methods. It showed high similarities between culture independent and dependent methods at the phylum level and large differences at the genus level, highlighting the complementarity between the two methods for identification of the native population bacteria in arsenic-rich mine. As a result, the present study can be a resource on microbes for bio-treatment of arsenic in mining waste.
    Matched MeSH terms: Actinobacteria/genetics
  12. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: Actinobacteria/genetics*
  13. Carlsohn MR, Groth I, Tan GYA, Schütze B, Saluz HP, Munder T, et al.
    Int J Syst Evol Microbiol, 2007 Jul;57(Pt 7):1640-1646.
    PMID: 17625209 DOI: 10.1099/ijs.0.64903-0
    Three actinomycetes isolated from the surfaces of rocks in a medieval slate mine were examined in a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics of the isolates were typical of strains of the genus Amycolatopsis. The isolates had identical 16S rRNA gene sequences and formed a distinct phyletic line towards the periphery of the Amycolatopsis mediterranei clade, being most closely related to Amycolatopsis rifamycinica. The organisms shared a wide range of genotypic and phenotypic markers that distinguished them from their closest phylogenetic neighbours. On the basis of these results, a novel species, Amycolatopsis saalfeldensis sp. nov., is proposed. The type strain is HKI 0457(T) (=DSM 44993(T)=NRRL B-24474(T)).
    Matched MeSH terms: Actinobacteria/genetics
  14. Chua LL, Rajasuriar R, Azanan MS, Abdullah NK, Tang MS, Lee SC, et al.
    Microbiome, 2017 03 20;5(1):35.
    PMID: 28320465 DOI: 10.1186/s40168-017-0250-1
    BACKGROUND: Adult survivors of childhood cancers such as acute lymphoblastic leukemia (ALL) have health problems that persist or develop years after cessation of therapy. These late effects include chronic inflammation-related comorbidities such as obesity and type 2 diabetes, but the underlying cause is poorly understood.

    RESULTS: We compared the anal microbiota composition of adult survivors of childhood ALL (N = 73) with healthy control subjects (N = 61). We identified an altered community with reduced microbial diversity in cancer survivors, who also exhibit signs of immune dysregulation including increased T cell activation and chronic inflammation. The bacterial community among cancer survivors was enriched for Actinobacteria (e.g. genus Corynebacterium) and depleted of Faecalibacterium, correlating with plasma concentrations of IL-6 and CRP and HLA-DR+CD4+ and HLA-DR+CD8+ T cells, which are established markers of inflammation and immune activation.

    CONCLUSIONS: We demonstrated a relationship between microbial dysbiosis and immune dysregulation in adult ALL survivors. These observations suggest that interventions that could restore microbial diversity may ameliorate chronic inflammation and, consequently, development of late effects of childhood cancer survivors.

    Matched MeSH terms: Actinobacteria/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links