Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Mo Y, Lim LS, Ng SK
    J Virol Methods, 2024 Sep;329:115005.
    PMID: 39128772 DOI: 10.1016/j.jviromet.2024.115005
    Zoonotic viruses are widely seen as the primary threat for future pandemics. Bats are the most diverse group of mammals, with more than 1400 species distributed across most habitats on Earth. So far, 31 known virus families were associated with bats, although the understanding of most viruses were insufficient. Continuous efforts to discover, understand and monitor these bats viruses, is thereby an area of public health interest. This systematic review was designed to catalogue publications reporting novel bat virus discoveries within PubMed, SCOPUS, and Web of Science databases, within a 5-year period from 2018 to 2022. Various experimental parameters, including sampling locations, methodology, bat species diversity, similarity to known viruses, species demarcation of new viruses, and genomic sequencing strategies, were extracted from 41 publications and analyzed. In total, 72 novel viruses from 19 virus families were identified between 2018 and 2022, particularly from Genomoviridae (DNA viruses) and Coronaviridae (RNA viruses). That said, only a limited number of bat families featured extensively despite noticeable shift towards next generation sequencing methods and metagenomics pipeline for virus identification across different sampling methods. This review aims to provide a comprehensive analysis of the global efforts made over the past five years to identify and characterize emerging viruses in bat species, and to provide a detailed overview of the current technologies and methodologies used in these studies.
    Matched MeSH terms: DNA Viruses/genetics; RNA Viruses/genetics; Viruses/genetics
  2. Acquah C, Danquah MK, Agyei D, Moy CK, Sidhu A, Ongkudon CM
    Crit Rev Biotechnol, 2016 Dec;36(6):1010-1022.
    PMID: 26381238
    The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.
    Matched MeSH terms: Viruses/genetics
  3. Fan Z, Dahal G, Dasgupta I, Hay J, Hull R
    J Gen Virol, 1996 May;77 ( Pt 5):847-54.
    PMID: 8609480
    The DNA genomes of isolates of rice tungro bacilliform virus from Bangladesh, India, Indonesia, Malaysia and Thailand were cloned and compared with that of the type isolate from the Philippines. Restriction endonuclease maps revealed differences between the isolates and cross-hybridization showed that they fell into two groups, those from the Indian subcontinent and those from south-east Asian countries. The genomes of isolates from the Indian subcontinent contained a deletion of 64 bp when compared with those from south-east Asia. The implications of this variation are discussed.
    Matched MeSH terms: Plant Viruses/genetics*
  4. Sittidilokratna N, Dangtip S, Sritunyalucksana K, Babu R, Pradeep B, Mohan CV, et al.
    Dis Aquat Organ, 2009 Apr 27;84(3):195-200.
    PMID: 19565696 DOI: 10.3354/dao02059
    Laem-Singh virus (LSNV) is a positive-sense single-stranded RNA (ssRNA) virus that was recently identified in Penaeus monodon shrimp in Thailand displaying signs of slow growth syndrome. A total of 326 shrimp collected between 1998 and 2007 from countries in the Indo-Pacific region were tested by RT-PCR for evidence of LSNV infection. The samples comprised batches of whole postlarvae, and lymphoid organ, gill, muscle or pleopod tissue of juvenile, subadult and adult shrimp. LSNV was not detected in 96 P. monodon, P. japonicus or P. merguiensis from Australia or 16 P. monodon from Fiji, Philippines, Sri Lanka and Mozambique. There was no evidence of LSNV infection in 73 healthy juvenile P. vannamei collected during 2006 from ponds at 9 locations in Thailand. However, LNSV was detected in each of 6 healthy P. monodon tested from Malaysia and Indonesia, 2 of 6 healthy P. monodon tested from Vietnam and 39 of 40 P. monodon collected from slow-growth ponds in Thailand. A survey of 81 P. monodon collected in 2007 from Andhra Pradesh, India, indicated 56.8% prevalence of LSNV infection but no clear association with disease or slow growth. Phylogenetic analysis of PCR amplicons obtained from samples from India, Vietnam, Malaysia and Thailand indicated that nucleotide sequence variation was very low (>98% identity) and there was no clustering of viruses according to site of isolation or the health status of the shrimp. The data suggests that LSNV exists as a single genetic lineage and occurs commonly in healthy P. monodon in parts of Asia.
    Matched MeSH terms: RNA Viruses/genetics*
  5. Chatterjee A, Sicheritz-Pontén T, Yadav R, Kondabagil K
    Sci Rep, 2019 03 06;9(1):3690.
    PMID: 30842490 DOI: 10.1038/s41598-019-40171-y
    We report the detection of genomic signatures of giant viruses (GVs) in the metagenomes of three environment samples from Mumbai, India, namely, a pre-filter of a household water purifier, a sludge sample from wastewater treatment plant (WWTP), and a drying bed sample of the same WWTP. The de novo assembled contigs of each sample yielded 700 to 2000 maximum unique matches with the GV genomic database. In all three samples, the maximum number of reads aligned to Pandoraviridae, followed by Phycodnaviridae, Mimiviridae, Iridoviridae, and other Megaviruses. We also isolated GVs from every environmental sample (n = 20) we tested using co-culture of the sample with Acanthomoeba castellanii. From this, four randomly selected GVs were subjected to the genomic characterization that showed remarkable cladistic homology with the three GV families viz., Mimivirirdae (Mimivirus Bombay [MVB]), Megaviruses (Powai lake megavirus [PLMV] and Bandra megavius [BAV]), and Marseilleviridae (Kurlavirus [KV]). All 4 isolates exhibited remarkable genomic identity with respective GV families. Functionally, the genomes were indistinguishable from other previously reported GVs, encoding nearly all COGs across extant family members. Further, the uncanny genomic homogeneity exhibited by individual GV families across distant geographies indicate their yet to be ascertained ecological significance.
    Matched MeSH terms: Giant Viruses/genetics*
  6. Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JAR, et al.
    Clin Microbiol Infect, 2019 Oct;25(10):1277-1285.
    PMID: 31059795 DOI: 10.1016/j.cmi.2019.04.028
    OBJECTIVES: Sample preparation for high-throughput sequencing (HTS) includes treatment with various laboratory components, potentially carrying viral nucleic acids, the extent of which has not been thoroughly investigated. Our aim was to systematically examine a diverse repertoire of laboratory components used to prepare samples for HTS in order to identify contaminating viral sequences.

    METHODS: A total of 322 samples of mainly human origin were analysed using eight protocols, applying a wide variety of laboratory components. Several samples (60% of human specimens) were processed using different protocols. In total, 712 sequencing libraries were investigated for viral sequence contamination.

    RESULTS: Among sequences showing similarity to viruses, 493 were significantly associated with the use of laboratory components. Each of these viral sequences had sporadic appearance, only being identified in a subset of the samples treated with the linked laboratory component, and some were not identified in the non-template control samples. Remarkably, more than 65% of all viral sequences identified were within viral clusters linked to the use of laboratory components.

    CONCLUSIONS: We show that high prevalence of contaminating viral sequences can be expected in HTS-based virome data and provide an extensive list of novel contaminating viral sequences that can be used for evaluation of viral findings in future virome and metagenome studies. Moreover, we show that detection can be problematic due to stochastic appearance and limited non-template controls. Although the exact origin of these viral sequences requires further research, our results support laboratory-component-linked viral sequence contamination of both biological and synthetic origin.

    Matched MeSH terms: Viruses/genetics
  7. Tan KE, Lim YY
    FEBS J, 2021 08;288(15):4488-4502.
    PMID: 33236482 DOI: 10.1111/febs.15639
    Circular RNAs (circRNAs) are a recently discovered class of noncoding RNAs found in many species across the eukaryotic kingdom. These intriguing RNA species are formed through a unique mechanism that is known as back splicing in which the 5' and 3' termini are covalently joined. Recent research has revealed that viruses also encode a repertoire of circRNAs. Some of these viral circRNAs are abundantly expressed and are reported to play a role in disease pathogenesis. A growing number of studies also indicate that host circRNAs are involved in immune responses against virus infections with either an antiviral or proviral role. In this review, we briefly introduce circRNA, its biogenesis, and mechanism of action. We go on to summarize the latest research on the expression, regulation, and functions of viral and host-encoded circRNAs during the host-virus interaction, with the aim of highlighting the potential of viral and host circRNAs as a suitable target for diagnostic biomarker development and therapeutic treatment of viral-associated diseases. We conclude by discussing the current limitations in knowledge and significance of elucidating the roles of circRNAs in host-virus interactions, as well as future directions for this emerging field.
    Matched MeSH terms: Viruses/genetics*
  8. Andrés C, Del Cuerpo M, Rabella N, Piñana M, Iglesias-Cabezas MJ, González-Sánchez A, et al.
    Virus Res, 2023 Jun;330:199089.
    PMID: 37011863 DOI: 10.1016/j.virusres.2023.199089
    BACKGROUND: Influenza B viruses (FLUBV) have segmented genomes which enables the virus to evolve by segment reassortment. Since the divergence of both FLUBV lineages, B/Victoria/2/87 (FLUBV/VIC) and B/Yamagata/16/88 (FLUBV/YAM), PB2, PB1 and HA have kept the same ancestor, while some reassortment events in the other segments have been reported worldwide. The aim of the present study was to find out reassortment episodes in FLUBV strains detected in cases attended at Hospital Universitari Vall d'Hebron and Hospital de la Santa Creu i Sant Pau (Barcelona, Spain) from 2004 to 2015 seasons.

    METHODS: From October 2004 to May 2015, respiratory specimens were received from patients with respiratory tract infection suspicion. Influenza detection was carried out by either cell culture isolation, immunofluorescence or PCR-based assays. A RT-PCR was performed to distinguish both lineages by agarose gel electrophoresis. Whole genome amplification was performed using the universal primer set by Zhou et al. in 2012, and subsequently sequenced using Roche 454 GS Junior platform. Bioinformatic analysis was performed to characterise the sequences with B/Malaysia/2506/2007 and B/Florida/4/2006 corresponding sequences as reference of (B/VIC) and (B/YAM), respectively.

    RESULTS: A total of 118 FLUBV (75 FLUBV/VIC and 43 FLUBV/YAM), from 2004 to 2006, 2008-2011 and 2012-2015 seasons, were studied. The whole genome of 58 FLUBV/VIC and 42 FLUBV/YAM viruses was successfully amplified. Based on HA sequences, most FLUBV/VIC viruses (37; 64%) belonged to clade 1A (B/Brisbane/60/2008) except to 11 (19%), which fell within clade 1B (B/HongKong/514/2009) and 10 (17%) to B/Malaysia/2506/2004. Nine (20%) FLUBV/YAM viruses belonged to clade 2 (B/Massachusetts/02/2012), 18 (42%) to clade 3 (B/Phuket/3073/2013) and 15 (38%) fell within Florida/4/2006. Numerous intra-lineage reassortments in PB2, PB1, NA and NS were found in 2 2010-2011 viruses. An important inter-lineage reassortment event from 2008 to 2009 (11), 2010-2011 (26) and 2012-2013 (3) FLUBV/VIC (clade 1) strains to FLUBV/YAM (clade 3) was found, in addition to 1 reassortant NS in 2010-2011 B/VIC virus.

    CONCLUSIONS: Intra- and inter-lineage reassortment episodes were revealed by WGS. While PB2-PB1-HA remained in complex, NP and NS reassortant viruses were found in both lineages. Despite reassorment events are not often, the characterisation only by HA and NA sequences might be underestimating their detection.

    Matched MeSH terms: Reassortant Viruses/genetics
  9. Tharanga S, Ünlü ES, Hu Y, Sjaugi MF, Çelik MA, Hekimoğlu H, et al.
    Brief Bioinform, 2024 Nov 22;26(1).
    PMID: 39592151 DOI: 10.1093/bib/bbae607
    Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence (DNA/RNA/protein) diversity by use of Shannon's entropy corrected for size bias, applied via a user-defined k-mer sliding window to an input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are (total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https://dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub).
    Matched MeSH terms: Viruses/genetics
  10. Chook JB, Ong LY, Takebe Y, Chan KG, Choo M, Kamarulzaman A, et al.
    Am J Trop Med Hyg, 2015 Mar;92(3):507-512.
    PMID: 25535315 DOI: 10.4269/ajtmh.14-0681
    A molecular genotyping assay for human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia is difficult to design because of the high level of genetic diversity. We developed a multiplex real-time polymerase chain reaction (PCR) assay to detect subtype B, CRF01_AE, CRF33_01B, and three newly described circulating recombinant forms, (CRFs) (CRF53_01B, CRF54_01B, and CRF58_01B). A total of 785 reference genomes were used for subtype-specific primers and TaqMan probes design targeting the gag, pol, and env genes. The performance of this assay was compared and evaluated with direct sequencing and phylogenetic analysis. A total of 180 HIV-infected subjects from Kuala Lumpur, Malaysia were screened and 171 samples were successfully genotyped, in agreement with the phylogenetic data. The HIV-1 genotype distribution was as follows: subtype B (16.7%); CRF01_AE (52.8%); CRF33_01B (24.4%); CRF53_01B (1.1%); CRF54_01B (0.6%); and CRF01_AE/B unique recombinant forms (4.4%). The overall accuracy of the genotyping assay was over 95.0%, in which the sensitivities for subtype B, CRF01_AE, and CRF33_01B detection were 100%, 100%, and 97.7%, respectively. The specificity of genotyping was 100%, inter-subtype specificities were > 95% and the limit of detection of 10(3) copies/mL for plasma. The newly developed real-time PCR assay offers a rapid and cost-effective alternative for large-scale molecular epidemiological surveillance for HIV-1.
    Matched MeSH terms: Reassortant Viruses/genetics*
  11. Li Y, Tee KK, Liao H, Hase S, Uenishi R, Li XJ, et al.
    J Acquir Immune Defic Syndr, 2010 Jun;54(2):129-36.
    PMID: 20386110 DOI: 10.1097/QAI.0b013e3181d82ce5
    A molecular epidemiological investigation conducted among injecting drug users in eastern Peninsular Malaysia in 2007 identified a cluster of sequences (n = 3) located outside any known HIV-1 genotype. Analyses of near full-length nucleotide sequences of these strains from individuals with no recognizable linkage revealed that they have an identical subtype structure comprised of CRF01_AE and subtype B', distinct from any known circulating recombinant forms (CRFs). This novel CRF, designated CRF48_01B, is closely related to CRF33_01B, previously identified in Kuala Lumpur. Phylogenetic analysis of multiple CRF48_01B genome regions showed that CRF48_01B forms a monophyletic cluster within CRF33_01B, suggesting that this new recombinant is very likely a descendant of CRF33_01B. CRF48_01B thus represents one of the first examples of a "second-generation" CRF, generated by additional crossover with pre-existing CRFs. Corroborating these results, Bayesian molecular clock analyses indicated that CRF48_01B emerged in approximately 2001, approximately approximately 8 years after the emergence of CRF33_01B.
    Matched MeSH terms: Reassortant Viruses/genetics
  12. Wang B, Lau KA, Ong LY, Shah M, Steain MC, Foley B, et al.
    Virology, 2007 Oct 25;367(2):288-97.
    PMID: 17604072
    The HIV protease-reverse transcriptase (PR-RT) (1047 bp), gp120-env (891 bp) and gp41-env (547 bp) regions from the plasma of 115 HIV-1-infected patients in Kuala Lumpur (KL), Malaysia were sequenced. Detailed phylogenetic and bootscanning analyses were performed to determine the mosaic structure of the HIV-1 strains and their recombination breakpoint(s). Among the 50 patient samples in which all three regions could be amplified, the HIV-1 CRF01_AE subtype (46%) was predominant followed by subtypes B (10%) and B' (6%). A total of 9/50 (18%) patients were infected with a CRF01_AE/B inter-subtype recombinant, displaying a recombinant form (RF)(PR-RT), CRF01_AE(gp120-env) and CRF01_AE(gp41-env). This RF was derived from the Thai variants of CRF01_AE and B' subtype, with two distinct B' subtype segments in the backbone of CRF01_AE, similar to the newly identified CRF33_01B. In addition, one sample demonstrated a close structural relationship with the new CRF33_01B in the PR-RT region but displayed B' segment in part of the env region (RF(PR-RT), CRF01_AE/B'(gp120-env) and B'(gp41-env)) indicating continuing evolution of CRF33_01B. The remaining 18% of samples were identified as unique recombinant forms (URFs).
    Matched MeSH terms: Reassortant Viruses/genetics*
  13. Zhang S, Davies JW, Hull R
    Virus Genes, 1997;15(1):61-4.
    PMID: 9354271
    Coat protein genes CP1, CP2 and CP3 of an isolate (MaP1) of rice tungro spherical virus (RTSV) from Malaysia were isolated, cloned and sequenced. Comparative analysis indicated that MaP1 isolate is closely related to the Philippine isolate.
    Matched MeSH terms: Plant Viruses/genetics*
  14. Lim SH, Jahanshiri F, Rahim RA, Sekawi Z, Yusoff K
    Lett Appl Microbiol, 2010 Dec;51(6):658-64.
    PMID: 20973806 DOI: 10.1111/j.1472-765X.2010.02950.x
    A system for displaying heterologous respiratory syncytial virus (RSV) glycoproteins on the surface of Lactococcus lactis NZ9000 was developed.
    Matched MeSH terms: Respiratory Syncytial Viruses/genetics*
  15. Kalyanasundram J, Hamid A, Yusoff K, Chia SL
    Acta Trop, 2018 Jul;183:126-133.
    PMID: 29626432 DOI: 10.1016/j.actatropica.2018.04.007
    The discovery of tumour selective virus-mediated apoptosis marked the birth of an alternative cancer treatment in the form of oncolytic viruses. Even though, its oncolytic efficiency was demonstrated more than 50 years ago, safety concerns which resulted from mild to lethal side effects hampered the progress of oncolytic virus research. Since the classical oncolytic virus studies rely heavily on its natural oncolytic ability, virus manipulation was limited, thereby, restricted efforts to improve its safety. In order to circumvent such restriction, experiments involving non-human viruses such as the avian Newcastle disease virus (NDV) was conducted using cultured cells, animal models and human subjects. The corresponding reports on its significant tumour cytotoxicity along with impressive safety profile initiated immense research interest in the field of oncolytic NDV. The varying degree of oncolytic efficiency and virulency among NDV strains encouraged researchers from all around the world to experiment with their respective local NDV isolates in order to develop an oncolytic virus with desirable characteristics. Such desirable features include high tumour-killing ability, selectivity and low systemic cytotoxicity. The Malaysian field outbreak isolate, NDV strain AF2240, also currently, receives significant research attention. Apart from its high cytotoxicity against tumour cells, this strain also provided fundamental insight into NDV-mediated apoptosis mechanism which involves Bax protein recruitment as well as death receptor engagement. Studies on its ability to selectively induce apoptosis in tumour cells also resulted in a proposed p38 MAPK/NF-κB/IκBα pathway. The immunogenicity of AF2240 was also investigated through PBMC stimulation and macrophage infection. In addition, the enhanced oncolytic ability of this strain under hypoxic condition signifies its dynamic tumour tropism. This review is aimed to introduce and discuss the aforementioned details of the oncolytic AF2240 strain along with its current challenges which outlines the future research direction of this virus.
    Matched MeSH terms: Oncolytic Viruses/genetics*
  16. Tan YF, Lim CY, Chong CW, Lim PKC, Yap IKS, Leong PP, et al.
    Intervirology, 2018;61(2):92-95.
    PMID: 30121676 DOI: 10.1159/000491602
    BACKGROUND: The giant amoebal viruses of Mimivirus and Marseillevirus are large DNA viruses and have been documented in water, soil, and sewage samples. The trend of discovering these giant amoebal viruses has been increasing throughout Asia with Japan, India, and Saudi Arabia being the latest countries to document the presence of these viruses. To date, there have been no reports of large amoebal viruses being isolated in South East Asia.

    OBJECTIVE: In this study, we aim to discover these viruses from soil samples in an aboriginal village (Serendah village) in Peninsular -Malaysia.

    METHOD AND RESULTS: We successfully detected and isolated both Mimivirus-like and Marseillevirus-like viruses using Acanthamoeba castellanii. Phylogeny analysis identified them as Mimivirus and Marseillevirus, respectively.

    CONCLUSION: The ubiquitous nature of both Mimivirus and Marseillevirus is further confirmed in our study as they are detected in higher quantity in soil that is near to water vicinities in an aboriginal village in Peninsular Malaysia. However, this study is limited by our inability to investigate the impact of Mimivirus and Marseillevirus on the aboriginal villagers. More studies on the potential impact of these viruses on human health, especially on the aborigines, are warranted.

    Matched MeSH terms: DNA Viruses/genetics*
  17. Bentley K, Tee HK, Pearson A, Lowry K, Waugh S, Jones S, et al.
    Viruses, 2021 11 29;13(12).
    PMID: 34960659 DOI: 10.3390/v13122390
    Positive-strand RNA virus evolution is partly attributed to the process of recombination. Although common between closely genetically related viruses, such as within species of the Enterovirus genus of the Picornaviridae family, inter-species recombination is rarely observed in nature. Recent studies have shown recombination is a ubiquitous process, resulting in a wide range of recombinant genomes and progeny viruses. While not all recombinant genomes yield infectious progeny virus, their existence and continued evolution during replication have critical implications for the evolution of the virus population. In this study, we utilised an in vitro recombination assay to demonstrate inter-species recombination events between viruses from four enterovirus species, A-D. We show that inter-species recombinant genomes are generated in vitro with polymerase template-switching events occurring within the virus polyprotein coding region. However, these genomes did not yield infectious progeny virus. Analysis and attempted recovery of a constructed recombinant cDNA revealed a restriction in positive-strand but not negative-strand RNA synthesis, indicating a significant block in replication. This study demonstrates the propensity for inter-species recombination at the genome level but suggests that significant sequence plasticity would be required in order to overcome blocks in the virus life cycle and allow for the production of infectious viruses.
    Matched MeSH terms: Reassortant Viruses/genetics*
  18. Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M
    World J Microbiol Biotechnol, 2021 Jul 09;37(8):131.
    PMID: 34240263 DOI: 10.1007/s11274-021-03097-0
    Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
    Matched MeSH terms: Viruses/genetics*
  19. Loh HS, Green BJ, Yusibov V
    Curr Opin Virol, 2017 10;26:81-89.
    PMID: 28800551 DOI: 10.1016/j.coviro.2017.07.019
    Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso®) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases.
    Matched MeSH terms: Plant Viruses/genetics*
  20. Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, et al.
    Sci Rep, 2018 01 17;8(1):896.
    PMID: 29343758 DOI: 10.1038/s41598-017-18825-6
    The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.
    Matched MeSH terms: Viruses/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links