Current growth in aquaculture production is parallel with the increasing number of disease outbreaks, which negatively affect the production, profitability, and sustainability of the global aquaculture industry. Vibriosis is among the most common diseases leading to massive mortality of cultured shrimp, fish, and shellfish in Asia. High incidence of vibriosis can occur in hatchery and grow-out facilities, but juveniles are more susceptible to the disease. Various factors, particularly the source of fish, environmental factors (including water quality and farm management), and the virulence factors of Vibrio, influence the occurrence of the disease. Affected fish show weariness, with necrosis of skin and appendages, leading to body malformation, slow growth, internal organ liquefaction, blindness, muscle opacity, and mortality. A combination of control measures, particularly a disease-free source of fish, biosecurity of the farm, improved water quality, and other preventive measures (e.g., vaccination) might be able to control the infection. Although some control measures are expensive and less practical, vaccination is effective, relatively cheap, and easily implemented. In this review, the latest knowledge on the pathogenesis and control of vibriosis, including vaccination, is discussed.
Matched MeSH terms: Vibrio Infections/prevention & control
Mild heat stress promotes thermotolerance and protection against several different stresses in aquatic animals, consequences correlated with the accumulation of heat shock protein 70 (Hsp70). The purpose of this study was to determine if non-lethal heat shock (NLHS) of the Asian green mussel, Perna viridis, an aquatic species of commercial value, promoted the production of Hsp70 and enhanced its resistance to stresses. Initially, the LT50 and LHT for P. viridis were determined to be 42°C and 44°C, respectively, with no heat shock induced death of mussels at 40°C or less. Immunoprobing of western blots revealed augmentation of constitutive (PvHsp70-1) and inducible (PvHsp70-2) Hsp70 in tissue from adductor muscle, foot, gill and mantel of P. viridis exposed to 38°C for 30 min followed by 6 h recovery, NLHS conditions for this organism. Characterization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that PvHsp70-1 and PvHsp70-2 respectively corresponded most closely to Hsp70 from P. viridis and Mytilus galloprovincialis. Priming of adult mussels with NLHS promoted thermotolerance and increased resistance to V. alginolyticus. The induction of Hsp70 in parallel with enhanced thermotolerance and improved protection against V. alginolyticus, suggests Hsp70 functions in P. viridis as a molecular chaperone and as a stimulator of the immune system.
Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture. In this study, we evaluated if the recombinant sea bass ferritin-H could stimulate the innate immune system of gnotobiotic European sea bass larvae resulting in protection against a V. anguillarum challenge. We also evaluated the effect of a V. anguillarum infection on the transcription of immune-related genes in gnotobiotic European sea bass larvae. Recombinant sea bass ferritin-H was produced, encapsulated in calcium alginate microparticles and orally delivered to sea bass larvae at seven days after hatching. Our results showed V. anguillarum caused an acute infection, resulting in high mortality. The infection significantly upregulated the expression of tlr3, tlr5, cas1, il1β, tnfα, mif, il10, cc1, cxcl8 at 18, 24 and 36 h post infection, but not of the chemokine receptor genes cxcr4 and ccr9. There was no protective effect of ferritin-H. Remarkably, ferritin-H caused significantly higher transcript levels for cxcr4 and ccr9. Sea bass ferritin-H was more likely involved in immune-suppression and results point in the direction of a negative regulation of CXCR4 resulting in inhibition of cell proliferation, differentiation and migration which is detrimental to innate immunity and might explain the non-protective effect of ferritin-H in fish larvae.
Matched MeSH terms: Vibrio Infections/prevention & control
Kitchen mishandling practices contribute to a large number of foodborne illnesses. In this study, the transfer and cross-contamination potential of Vibrio parahaemolyticus from bloody clams to ready-to-eat food (lettuce) was assessed. Three scenarios were investigated: 1) direct cross-contamination, the transfer of V. parahaemolyticus from bloody clams to non-food contact surfaces (hands and kitchen utensils) to lettuce (via slicing), was evaluated; 2) perfunctory decontamination, the efficacy of two superficial cleaning treatments: a) rinsing in a pail of water, and b) wiping with a kitchen towel, were determined; and 3) secondary cross-contamination, the microbial transfer from cleaning residuals (wash water or stained kitchen towel) to lettuce was assessed. The mean of percent transfer rates through direct contact was 3.6%, and an average of 3.5% of total V. parahaemolyticus was recovered from sliced lettuce. The attempted treatments reduced the transferred population by 99.0% (rinsing) and 94.5% (wiping), and the relative amount of V. parahaemolyticus on sliced lettuce was reduced to 0.008%. V. parahaemolyticus exposure via secondary cross-contamination was marginal. The relative amount of V. parahaemolyticus recovered from washed lettuce was 0.07%, and the transfers from stained kitchen towel to lettuce were insubstantial. Our study highlights that V. parahaemolyticus was readily spread in the kitchen, potentially through sharing of non-food contact surfaces. Results from this study can be used to better understand and potentially raising the awareness of proper handling practices to avert the spread of foodborne pathogens.