Displaying all 14 publications

Abstract:
Sort:
  1. Chan CH, See TY, Yusoff R, Ngoh GC, Kow KW
    Food Chem, 2017 Apr 15;221:1382-1387.
    PMID: 27979103 DOI: 10.1016/j.foodchem.2016.11.016
    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results.
    Matched MeSH terms: Ultrasonics/methods*
  2. Sivakumar M, Tang SY, Tan KW
    Ultrason Sonochem, 2014 Nov;21(6):2069-83.
    PMID: 24755340 DOI: 10.1016/j.ultsonch.2014.03.025
    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.
    Matched MeSH terms: Ultrasonics/methods*
  3. Eh AL, Teoh SG
    Ultrason Sonochem, 2012 Jan;19(1):151-9.
    PMID: 21715212 DOI: 10.1016/j.ultsonch.2011.05.019
    Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11±0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81±0.81% with 3.19±0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27±0.52% with β-carotene constituted 1.73±0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.
    Matched MeSH terms: Ultrasonics/methods*
  4. Chong FC, Gwee XF
    Nat Prod Res, 2015;29(15):1485-7.
    PMID: 25836369 DOI: 10.1080/14786419.2015.1027892
    The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.
    Matched MeSH terms: Ultrasonics/methods*
  5. Manickam S, Sivakumar K, Pang CH
    Ultrason Sonochem, 2020 Dec;69:105258.
    PMID: 32702637 DOI: 10.1016/j.ultsonch.2020.105258
    O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.
    Matched MeSH terms: Ultrasonics/methods*
  6. Karami N, Mohammadi P, Zinatizadeh A, Falahi F, Aghamohammadi N
    Ultrason Sonochem, 2018 Sep;46:89-98.
    PMID: 29739516 DOI: 10.1016/j.ultsonch.2018.04.009
    The biomass concentration of conventional activated sludge (CAS) process due to low sludge sedimentation in clarifiers is limited to 3000 mg/L. In this study, high-frequency ultrasound wave (1.8 MHz) was applied to enhance the CAS process performance using high Mixed Liquor Suspended Solid (MLSS) concentration. The study conducted using a pilot scale CAS bioreactor (with and without ultrasound) and their performance for treating a hospital wastewater were compared. Experimental conditions were designed based on a Central Composite Design (CCD). The sets of data analyzed, modeled and optimized using Response Surface Methodology (RSM). The effect of MLSS concentration 3000-8000 mg/L and hydraulic retention time (HRT) 2-8 h are considered as operating variables to investigate on process responses. The obtained results showed that high-frequency ultrasound was significantly decreased the sludge volume index (SVI) 50% and effluent turbidity about 88.5% at high MLSS. Also, observed that COD removal of both systems was nearly similar, as the maximum COD removal for sonicated and non-sonicated systems were 92 and 92.5% respectively. However, this study demonstrates that the ultrasound irradiation has not had any negative effect on the microbial activity.
    Matched MeSH terms: Ultrasonics/methods*
  7. Ullah S, Anwar F, Fayyaz Ur Rehman M, Qadir R, Safwan Akram M
    Chem Biodivers, 2023 Jul;20(7):e202300107.
    PMID: 37172296 DOI: 10.1002/cbdv.202300107
    This article presents an optimized ultrasound-assisted ethanolic extraction (UAEE) and characterization of selected high-value components from Gemlik olive fruit (GOF) harvested from Potohar region of Pakistan. Response surface methodology (RSM), involving central composite design (CCD), was applied to optimize the extraction variables i. e., temperature (25-65 °C), extraction time (15-45 min) and aqueous ethanol concentration (60-90 %) for optimal recovery of bioactives extract, total phenolic contents (TPC) and DPPH free radical scavengers. Under the optimized set of conditions such as 43 °C temperature, 32 min extraction time and 80 % aqueous ethanol, the best extract yield (218.82 mg/g), TPC (19.87 mg GAE/g) and DPPH scavenging activity (63.04 %) were recorded. A quadratic polynomial model was found to be reasonably fitted to the observed results for extract yield (p<0.0001 and R2 =0.9941), TPC (p<0.0001 and R2 =0.9891), and DPPH radical scavenging activity (p<0.0001 and R2 =0.9692). Potent phenolic compounds were identified by GC/MS in GOF extract and considerable amount of essential fatty acids were also detected. The current findings support the use of UAEE as an effective green route for optimized recovery of high-value components from GOF and hence its applications can be extended to functional food and nutra-pharmaceutical developments.
    Matched MeSH terms: Ultrasonics/methods
  8. Samaram S, Mirhosseini H, Tan CP, Ghazali HM, Bordbar S, Serjouie A
    Food Chem, 2015 Apr 1;172:7-17.
    PMID: 25442517 DOI: 10.1016/j.foodchem.2014.08.068
    The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) condition on the yield, antioxidant activity and stability of the oil from papaya seed. The studied ultrasound variables were time, temperature, ultrasound power and solvent to sample ratio. The main goal was to optimise UAE condition providing the highest recovery of papaya seed oil with the most desirable antioxidant activity and stability. The interaction of ultrasound variables had the most and least significant effects on the antioxidant activity and stability, respectively. Ultrasound-assisted extraction provided a relatively high oil recovery (∼ 73%) from papaya seed. The strongest antioxidant activity was achieved by the extraction at the elevated temperature using low solvent to sample ratio. The optimum ultrasound extraction was set at the elevated temperature (62.5 °C) for 38.5 min at high ultrasound power (700 W) using medium solvent to sample ratio (∼ 7:1 v/w). The optimum point was practically validated.
    Matched MeSH terms: Ultrasonics/methods*
  9. Yunus R, Salleh SF, Abdullah N, Biak DR
    Bioresour Technol, 2010 Dec;101(24):9792-6.
    PMID: 20719502 DOI: 10.1016/j.biortech.2010.07.074
    Various pre-treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. The effect of ultrasonic pre-treatment on oil palm empty fruit bunch (OPEFB) fibre prior to acid hydrolysis has been evaluated. The main objective of this study was to determine if ultrasonic pre-treatment could function as a pre-treatment method for the acid hydrolysis of OPEFB fibre at a low temperature and pressure. Hydrolysis at a low temperature was studied using 2% sulphuric acid; 1:25 solid liquid ratio and 100 degrees C operating temperature. A maximum xylose yield of 58% was achieved when the OPEFB fibre was ultrasonicated at 90% amplitude for 45min. In the absence of ultrasonic pre-treatment only 22% of xylose was obtained. However, no substantial increase of xylose formation was observed for acid hydrolysis at higher temperatures of 120 and 140 degrees C on ultrasonicated OPEFB fibre. The samples were then analysed using a scanning electron microscope (SEM) to describe the morphological changes of the OPEFB fibre. The SEM observations show interesting morphological changes within the OPEFB fibre for different acid hydrolysis conditions.
    Matched MeSH terms: Ultrasonics/methods*
  10. Chong KH, Poh BK, Jamil NA, Kamaruddin NA, Deurenberg P
    Biomed Res Int, 2015;2015:232876.
    PMID: 25922831 DOI: 10.1155/2015/232876
    Aim. To validate a radial quantitative ultrasound (QUS) system with dual energy X-ray absorptiometry (DXA), a criterion technique in bone status assessment among children. Methods. Bone health was evaluated using a radial QUS system (Sunlight Omnisense 8000P) to measure the speed of sound (SOS) at one-third distal radius of the nondominant hand and DXA (Hologic QDR) was used to assess whole body bone mineral density (BMD). Results. Some 29.9% of the children were grossly misclassified according to quartiles of BMD and radial SOS. Poor agreement was observed between Z-scores of radial SOS and whole-body BMD (mean difference = 0.6 ± 0.9; 95% limits of agreement = -1.4 to 2.6). With a cut-off value of -1.0, radial SOS yielded satisfactory sensitivity (80%) and specificity (93%) for the detection of children with low BMD. Conclusion. The observed poor agreement in the present study suggests that radial QUS and DXA are not comparable and hence are not interchangeable in evaluating bone status of the children.
    Matched MeSH terms: Ultrasonics/methods*
  11. Acharya UR, Molinari F, Sree SV, Swapna G, Saba L, Guerriero S, et al.
    Technol Cancer Res Treat, 2015 Jun;14(3):251-61.
    PMID: 25230716 DOI: 10.1177/1533034614547445
    Ovarian cancer is the most common cause of death among gynecological malignancies. We discuss different types of clinical and nonclinical features that are used to study and analyze the differences between benign and malignant ovarian tumors. Computer-aided diagnostic (CAD) systems of high accuracy are being developed as an initial test for ovarian tumor classification instead of biopsy, which is the current gold standard diagnostic test. We also discuss different aspects of developing a reliable CAD system for the automated classification of ovarian cancer into benign and malignant types. A brief description of the commonly used classifiers in ultrasound-based CAD systems is also given.
    Matched MeSH terms: Ultrasonics/methods
  12. Sunasee S, Leong KH, Wong KT, Lee G, Pichiah S, Nah I, et al.
    Environ Sci Pollut Res Int, 2019 Jan;26(2):1082-1093.
    PMID: 28290089 DOI: 10.1007/s11356-017-8729-7
    Since bisphenol A (BPA) exhibits endocrine disrupting action and high toxicity in aqueous system, there are high demands to remove it completely. In this study, the BPA removal by sonophotocatalysis coupled with nano-structured graphitic carbon nitride (g-C3N4, GCN) was conducted with various batch tests using energy-based advanced oxidation process (AOP) based on ultrasound (US) and visible light (Vis-L). Results of batch tests indicated that GCN-based sonophotocatalysis (Vis-L/US) had higher rate constants than other AOPs and especially two times higher degradation rate than TiO2-based Vis-L/US. This result infers that GCN is effective in the catalytic activity in Vis-L/US since its surface can be activated by Vis-L to transport electrons from valence band (VB) for utilizing holes (h+VB) in the removal of BPA. In addition, US irradiation exfoliated the GCN effectively. The formation of BPA intermediates was investigated in detail by using high-performance liquid chromatography-mass spectrometry (HPLC/MS). The possible degradation pathway of BPA was proposed.
    Matched MeSH terms: Ultrasonics/methods
  13. Noroozi M, Zakaria A, Radiman S, Abdul Wahab Z
    PLoS One, 2016;11(4):e0152699.
    PMID: 27064575 DOI: 10.1371/journal.pone.0152699
    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.
    Matched MeSH terms: Ultrasonics/methods*
  14. Jibril S, Basar N, Sirat HM, Wahab RA, Mahat NA, Nahar L, et al.
    Phytochem Anal, 2019 Jan;30(1):101-109.
    PMID: 30288828 DOI: 10.1002/pca.2795
    INTRODUCTION: Cassia singueana Del. (Fabaceae) is a rare medicinal plant used in the traditional medicine preparations to treat various ailments. The root of C. singueana is a rich source of anthraquinones that possess anticancer, antibacterial and antifungal properties.

    OBJECTIVE: The objective of this study was to develop an ultrasound-assisted extraction (UAE) method for achieving a high extraction yield of anthraquinones using the response surface methodology (RSM), Box-Behnken design (BBD), and a recycling preparative high-performance liquid chromatography (HPLC) protocol for isolation of anthraquinones from C. singueana.

    METHODOLOGY: Optimisation of UAE was performed using the Box-Behnken experimental design. Recycling preparative HPLC was employed to isolate anthraquinones from the root extract of C. singueana.

    RESULTS: The BBD was well-described by a quadratic polynomial model (R2  = 0.9751). The predicted optimal UAE conditions for a high extraction yield were obtained at: extraction time 25.00 min, temperature 50°C and solvent-sample ratio of 10 mL/g. Under the predicted conditions, the experimental value (1.65 ± 0.07%) closely agreed to the predicted yield (1.64%). The obtained crude extract of C. singueana root was subsequently purified to afford eight anthraquinones.

    CONCLUSION: The extraction protocol described here is suitable for large-scale extraction of anthraquinones from plant extracts.

    Matched MeSH terms: Ultrasonics/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links