Displaying publications 1 - 20 of 372 in total

Abstract:
Sort:
  1. Matched MeSH terms: Tropical Climate
  2. Yew SM, Chan CL, Lee KW, Na SL, Tan R, Hoh CC, et al.
    PLoS One, 2014;9(8):e104352.
    PMID: 25098697 DOI: 10.1371/journal.pone.0104352
    Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ≤ 1 µg/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 µg/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance.
    Matched MeSH terms: Tropical Climate*
  3. Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, et al.
    Ecol Lett, 2018 07;21(7):989-1000.
    PMID: 29659115 DOI: 10.1111/ele.12964
    Topography is a key driver of tropical forest structure and composition, as it constrains local nutrient and hydraulic conditions within which trees grow. Yet, we do not fully understand how changes in forest physiognomy driven by topography impact other emergent properties of forests, such as their aboveground carbon density (ACD). Working in Borneo - at a site where 70-m-tall forests in alluvial valleys rapidly transition to stunted heath forests on nutrient-depleted dip slopes - we combined field data with airborne laser scanning and hyperspectral imaging to characterise how topography shapes the vertical structure, wood density, diversity and ACD of nearly 15 km2 of old-growth forest. We found that subtle differences in elevation - which control soil chemistry and hydrology - profoundly influenced the structure, composition and diversity of the canopy. Capturing these processes was critical to explaining landscape-scale heterogeneity in ACD, highlighting how emerging remote sensing technologies can provide new insights into long-standing ecological questions.
    Matched MeSH terms: Tropical Climate*
  4. Feeley KJ, Joseph Wright S, Nur Supardi MN, Kassim AR, Davies SJ
    Ecol Lett, 2007 Jun;10(6):461-9.
    PMID: 17498145
    The impacts of global change on tropical forests remain poorly understood. We examined changes in tree growth rates over the past two decades for all species occurring in large (50-ha) forest dynamics plots in Panama and Malaysia. Stem growth rates declined significantly at both forests regardless of initial size or organizational level (species, community or stand). Decreasing growth rates were widespread, occurring in 24-71% of species at Barro Colorado Island, Panama (BCI) and in 58-95% of species at Pasoh, Malaysia (depending on the sizes of stems included). Changes in growth were not consistently associated with initial growth rate, adult stature, or wood density. Changes in growth were significantly associated with regional climate changes: at both sites growth was negatively correlated with annual mean daily minimum temperatures, and at BCI growth was positively correlated with annual precipitation and number of rainfree days (a measure of relative insolation). While the underlying cause(s) of decelerating growth is still unresolved, these patterns strongly contradict the hypothesized pantropical increase in tree growth rates caused by carbon fertilization. Decelerating tree growth will have important economic and environmental implications.
    Matched MeSH terms: Tropical Climate*
  5. Ledo A, Cornulier T, Illian JB, Iida Y, Kassim AR, Burslem DF
    Ecol Appl, 2016 Dec;26(8):2374-2380.
    PMID: 27907254 DOI: 10.1002/eap.1450
    Accurate estimation of tree biomass is necessary to provide realistic values of the carbon stored in the terrestrial biosphere. A recognized source of errors in tree aboveground biomass (AGB) estimation is introduced when individual tree height values (H) are not directly measured but estimated from diameter at breast height (DBH) using allometric equations. In this paper, we evaluate the performance of 12 alternative DBH : H equations and compare their effects on AGB estimation for three tropical forests that occur in contrasting climatic and altitudinal zones. We found that fitting a three-parameter Weibull function using data collected locally generated the lowest errors and bias in H estimation, and that equations fitted to these data were more accurate than equations with parameters derived from the literature. For computing AGB, the introduced error values differed notably among DBH : H allometric equations, and in most cases showed a clear bias that resulted in either over- or under-estimation of AGB. Fitting the three-parameter Weibull function minimized errors in AGB estimates in our study and we recommend its widespread adoption for carbon stock estimation. We conclude that many previous studies are likely to present biased estimates of AGB due to the method of H estimation.
    Matched MeSH terms: Tropical Climate*
  6. Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, et al.
    Nat Ecol Evol, 2021 Feb;5(2):174-183.
    PMID: 33199870 DOI: 10.1038/s41559-020-01340-9
    Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.
    Matched MeSH terms: Tropical Climate*
  7. Zuleta D, Arellano G, McMahon SM, Aguilar S, Bunyavejchewin S, Castaño N, et al.
    Glob Chang Biol, 2023 Jun;29(12):3409-3420.
    PMID: 36938951 DOI: 10.1111/gcb.16687
    Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha-1  year-1 ; 95% confidence interval [CI] 2.36-5.25) of total AGB loss (8.72 Mg ha-1  year-1 ; CI 5.57-12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%-17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%-57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%-80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.
    Matched MeSH terms: Tropical Climate*
  8. Banin LF, Raine EH, Rowland LM, Chazdon RL, Smith SW, Rahman NEB, et al.
    Philos Trans R Soc Lond B Biol Sci, 2023 Jan 02;378(1867):20210090.
    PMID: 36373930 DOI: 10.1098/rstb.2021.0090
    Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
    Matched MeSH terms: Tropical Climate*
  9. Cooper DLM, Lewis SL, Sullivan MJP, Prado PI, Ter Steege H, Barbier N, et al.
    Nature, 2024 Jan;625(7996):728-734.
    PMID: 38200314 DOI: 10.1038/s41586-023-06820-z
    Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
    Matched MeSH terms: Tropical Climate*
  10. Sundqvist MK, Hasselquist NJ, Jensen J, Runesson J, Goodman RC, Axelsson EP, et al.
    Sci Rep, 2024 Jul 22;14(1):16772.
    PMID: 39039098 DOI: 10.1038/s41598-024-65138-6
    Secondary tropical forests are at the forefront of deforestation pressures. They store large amounts of carbon, which, if compensated for to avoid net emissions associated with conversion to non-forest uses, may help advance tropical forest conservation. We measured above- and below-ground carbon stocks down to 1 m soil depth across a secondary forest and in oil palm plantations in Malaysia. We calculated net carbon losses when converting secondary forests to oil palm plantations and estimated payments to avoid net emissions arising from land conversion to a 22-year oil palm rotation, based on land opportunity costs per hectare. We explored how estimates would vary between forests by also extracting carbon stock data for primary forest from the literature. When tree and soil carbon was accounted for, payments of US$18-51 tCO2-1 for secondary forests and US$14-40 tCO2-1 for primary forest would equal opportunity costs associated with oil palm plantations per hectare. If detailed assessments of soil carbon were not accounted for, payments to offset opportunity costs would need to be considerably higher for secondary forests (US$28-80 tCO2-1). These results show that assessment of carbon stocks down to 1 m soil depth in tropical forests can substantially influence the estimated value of avoided-emission payments.
    Matched MeSH terms: Tropical Climate*
  11. Ewers RM, Orme CDL, Pearse WD, Zulkifli N, Yvon-Durocher G, Yusah KM, et al.
    Nature, 2024 Jul;631(8022):808-813.
    PMID: 39020163 DOI: 10.1038/s41586-024-07657-w
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
    Matched MeSH terms: Tropical Climate*
  12. Terryn L, Calders K, Meunier F, Bauters M, Boeckx P, Brede B, et al.
    Glob Chang Biol, 2024 Aug;30(8):e17473.
    PMID: 39155688 DOI: 10.1111/gcb.17473
    Tree allometric models, essential for monitoring and predicting terrestrial carbon stocks, are traditionally built on global databases with forest inventory measurements of stem diameter (D) and tree height (H). However, these databases often combine H measurements obtained through various measurement methods, each with distinct error patterns, affecting the resulting H:D allometries. In recent decades, terrestrial laser scanning (TLS) has emerged as a widely accepted method for accurate, non-destructive tree structural measurements. This study used TLS data to evaluate the prediction accuracy of forest inventory-based H:D allometries and to develop more accurate pantropical allometries. We considered 19 tropical rainforest plots across four continents. Eleven plots had forest inventory and RIEGL VZ-400(i) TLS-based D and H data, allowing accuracy assessment of local forest inventory-based H:D allometries. Additionally, TLS-based data from 1951 trees from all 19 plots were used to create new pantropical H:D allometries for tropical rainforests. Our findings reveal that in most plots, forest inventory-based H:D allometries underestimated H compared with TLS-based allometries. For 30-metre-tall trees, these underestimations varied from -1.6 m (-5.3%) to -7.5 m (-25.4%). In the Malaysian plot with trees reaching up to 77 m in height, the underestimation was as much as -31.7 m (-41.3%). We propose a TLS-based pantropical H:D allometry, incorporating maximum climatological water deficit for site effects, with a mean uncertainty of 19.1% and a mean bias of -4.8%. While the mean uncertainty is roughly 2.3% greater than that of the Chave2014 model, this model demonstrates more consistent uncertainties across tree size and delivers less biased estimates of H (with a reduction of 8.23%). In summary, recognizing the errors in H measurements from forest inventory methods is vital, as they can propagate into the allometries they inform. This study underscores the potential of TLS for accurate H and D measurements in tropical rainforests, essential for refining tree allometries.
    Matched MeSH terms: Tropical Climate*
  13. Muhammad M, Loong SK, Khor CS, Mohd-Azami SNI, Kafle A, Useh U, et al.
    Trop Biomed, 2024 Mar 01;41(1):78-83.
    PMID: 38852137 DOI: 10.47665/tb.41.1.010
    The present study aimed at exploring whether sunlight exposure might account for the relative difference in COVID-19-related morbidity and mortality between tropical and non-tropical countries. A retrospective observational study was designed and data from the World Health Organization weekly COVID-19 epidemiological update was compiled. We examined the total number of confirmed COVID-19 cases per 100 000 population, as well as the total number of COVID-19-related mortalities per 100 000 population. Solar variables data were obtained from the Global Solar Atlas website (https://globalsolaratlas.info/). These data were analyzed to determine the association of sunlight exposure to COVID-19-related morbidity and mortality in tropical and non-tropical countries. Results revealed a statistically significant decrease in the number of confirmed COVID-19 cases per 100 000 population (P<0.001), as well as the number of COVID-19-related mortalities per 100 000 population (P<0.001) between tropical and non-tropical countries. Analyses of sunlight exposure data found that specific photovoltaic power output, global horizontal irradiation, diffuse horizontal irradiation and global tilted irradiation at optimum angle were significantly inversely correlated to COVID-19-related morbidity and mortality. This suggests that stronger sunlight exposure potentially leads to lower COVID-19-related morbidity and mortality. Findings from this study suggest that the relatively low COVID-19-related morbidity and mortality in tropical countries were possibly due to better sunlight exposure that translates into adequate vitamin D status.
    Matched MeSH terms: Tropical Climate*
  14. Boyle MJW, Sharp AC, Barclay MV, Chung AYC, Ewers RM, de Rougemont G, et al.
    Curr Biol, 2024 Aug 19;34(16):R770-R771.
    PMID: 39163835 DOI: 10.1016/j.cub.2024.06.059
    Insects are posited to be declining globally. This is particularly pertinent in tropical forests, which exhibit both the highest levels of biodiversity and the highest rates of biodiversity loss. However, for the hyper-diverse tropical insects there are scant data available to evidence declines. Understanding tropical insect diversity and its response to environmental change has therefore become a challenge, but it is estimated that 80% of tropical insect species remain undescribed1. Insect biodiversity predictions are based mostly on well-studied taxa and extrapolated to other groups, but no one knows whether resilience to environmental change varies between undescribed and described species. Here, we collected staphylinid beetles from unlogged and logged tropical forests in Borneo and investigated their responses to environmental change. Out of 252 morphospecies collected, 76% were undescribed. Undescribed species showed higher community turnover, reduced abundance and decreased probability of occurrence in logged forests. Thus the unknown components of tropical insect biodiversity are likely more impacted by human-induced environmental change. If these patterns are widespread, how accurate will assessments of insect declines in the tropics be?
    Matched MeSH terms: Tropical Climate*
  15. Condit R, Ashton PS, Manokaran N, LaFrankie JV, Hubbell SP, Foster RB
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1739-48.
    PMID: 11605618
    Dynamics of the Pasoh forest in Peninsular Malaysia were assessed by drawing a comparison with a forest in Panama, Central America, whose dynamics have been thoroughly described. Census plots of 50 ha were established at both sites using standard methods. Tree mortality at Pasoh over an eight-year interval was 1.46% yr(-1) for all stems > or = 10 mm diameter at breast height (dbh), and 1.48% yr(-1) for stems > or = 100 mm dbh. Comparable figures at the Barro Colorado Island site in Panama (BCI) were 2.55% and 2.03%. Growth and recruitment rates were likewise considerably higher at BCI than at Pasoh. For example, in all trees 500-700 mm in dbh, mean BCI growth over the period 1985-1995 was 6 mm yr(-1), whereas mean Pasoh growth was about 3.5 mm yr(-1). Examining growth and mortality rates for individual species showed that the difference between the forests can be attributed to a few light-demanding pioneer species at BCI, which have very high growth and mortality; Pasoh is essentially lacking this guild. The bulk of the species in the two forests are shade-tolerant and have very similar mortality, growth and recruitment. The Pasoh forest is more stable than BCI's in another way as well: few of its tree populations changed much over the eight-year census interval. In contrast, at BCI, over 10% of the species had populations increasing or decreasing at a rate of >0.05 yr(-1) compared to just 2% of the species at Pasoh). The faster species turnover at BCI can probably be attributed to severe droughts that have plagued the forest periodically over the past 30 years; Pasoh has not suffered such extreme events recently. The dearth of pioneer species at Pasoh is associated with low-nutrient soil and slow litter breakdown, but the exact mechanisms behind this association remain poorly understood.
    Matched MeSH terms: Tropical Climate
  16. Dantas-Torres F, Ketzis J, Mihalca AD, Baneth G, Otranto D, Tort GP, et al.
    Vet Parasitol, 2020 Jul;283:109167.
    PMID: 32580071 DOI: 10.1016/j.vetpar.2020.109167
    The Tropical Council for Companion Animal Parasites Ltd. (TroCCAP) is a not-for-profit organisation whose mission is to independently inform, guide and make best-practice recommendations for the diagnosis, treatment and control of companion animal parasites in the tropics and sub-tropics, with the aim of protecting animal and human health. In line with this primary mission, TroCCAP recently developed guidelines for the diagnosis, treatment and control of feline and canine parasites in the tropics. The development of these guidelines required unique and complex considerations to be addressed, often inapplicable to developed nations. Much of the tropics encompass middle-to-low income countries in which poor standards of environmental hygiene and large populations of stray dogs and cats coexist. In these regions, a range of parasites pose a high risk to companion animals, which ultimately may place their owners at risk of acquiring parasitic zoonoses. These considerations led to the development of unique recommendations with regard, for example, to deworming and endoparasite testing intervals for the control of both global and 'region-specific' parasites in the tropics. Moreover, the 'off-' or 'extra'-label use of drugs for the treatment and control of parasitic infections is common practice in many tropical countries and many generic products lack manufacturers' information on efficacy, safety, and quality control. Recommendations and advice concerning the use of such drugs and protocols are also addressed in these guidelines. The formation of these guidelines is an important first step towards improving the education of veterinarians specifically regarding best-practice for the diagnosis, treatment and control of canine and feline parasites in the tropics.
    Matched MeSH terms: Tropical Climate
  17. Su AT, Darus A, Bulgiba A, Maeda S, Miyashita K
    J Occup Health, 2012;54(5):349-60.
    PMID: 22863899
    The internationally accepted limit values and the health effects of hand-transmitted vibration exposure have been described extensively in the literature from temperate climate countries but not from a tropical climate environment.

    OBJECTIVES: We conducted a systematic review of the health effects of hand-transmitted vibration exposure in tropical countries to determine the characteristics of hand-arm vibration syndrome in a warm environment and compared the findings with the results of the systematic reviews published by the US NIOSH.

    METHODS: We searched major medical databases including MEDLINE, PubMed, Embase, CINAHL, Ovid and Cochrane based on the terms "hand arm vibration syndrome," "hand transmitted vibration," "vibration white finger" and "Raynaud" up to January 2011. Only studies conducted in a tropical or subtropical environment were selected for the review. The quality of the selected papers was assessed independently by two investigators using predefined criteria. A standard set of information was abstracted from the papers for review.

    RESULTS: Only six papers from tropical countries and three papers from subtropical countries were available in the literature. No vibration white finger was reported in the tropical countries. Neurological symptoms were prevalent in the vibration-exposed workers. Finger coldness seems to be an important surrogate for vascular disorder in a tropical environment. Meta-analysis could not be performed due to inadequacy of the information reported in these papers.

    CONCLUSIONS: The current dose-response relationship in ISO5349-1 for hand-transmitted vibration exposure is not applicable to a tropical environment. Further studies on hand-arm vibration syndromes in tropical countries are needed.

    Matched MeSH terms: Tropical Climate*
  18. Baldeck CA, Kembel SW, Harms KE, Yavitt JB, John R, Turner BL, et al.
    Oecologia, 2016 10;182(2):547-57.
    PMID: 27337965 DOI: 10.1007/s00442-016-3686-2
    While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.
    Matched MeSH terms: Tropical Climate*
  19. Fayle TM, Turner EC, Basset Y, Ewers RM, Reynolds G, Novotny V
    Trends Ecol Evol, 2015 Jun;30(6):334-46.
    PMID: 25896491 DOI: 10.1016/j.tree.2015.03.010
    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments.
    Matched MeSH terms: Tropical Climate*
  20. Sahid IB, Wei CC
    Bull Environ Contam Toxicol, 1993 Jan;50(1):24-8.
    PMID: 8418934
    Matched MeSH terms: Tropical Climate*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links