Displaying all 5 publications

Abstract:
Sort:
  1. Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, et al.
    Aquat Toxicol, 2024 May;270:106900.
    PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900
    Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
    Matched MeSH terms: Titanium/toxicity
  2. Senthil Rathi B, Ewe LS, S S, S S, Yew WK, R B, et al.
    Nanotoxicology, 2024 May;18(3):272-298.
    PMID: 38821108 DOI: 10.1080/17435390.2024.2349304
    Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe3O4) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.
    Matched MeSH terms: Titanium/toxicity
  3. Jukapli NM, Bagheri S
    J. Photochem. Photobiol. B, Biol., 2016 Oct;163:421-30.
    PMID: 27639172 DOI: 10.1016/j.jphotobiol.2016.08.046
    This review provides a background, fundamental and advanced application of titania nanoparticles (TiO2) on the disinfection and killing of cancer cell through photocatalytic chemistry. It starts with the characteristic properties focused on the surface, light sensitivity, crystallinity and toxicology of TiO2 as a photocatalyst. Consequently, outline and design of photocatalytic reactor has been figured out based on the target organisms, including bacteria, viruses, fungi and cancer cells. Despite a large number of studies undertaken, limited selectivity and efficacy of TiO2 photocatalyst are still widely accepted problems. An ideal TiO2 photocatalyst should have the combined properties of highly stable reactive oxygen species yield and a greater degree of selectivity towards cancerous cell without damaging the healthy tissues. Hybridization of TiO2 with metal, metal oxide and carbon nano materials significantly improved both of stability and selectivity of TiO2, whilst maintaining its high Photodynamic reactivity.
    Matched MeSH terms: Titanium/toxicity
  4. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    J Environ Sci (China), 2018 Oct;72:140-152.
    PMID: 30244741 DOI: 10.1016/j.jes.2017.12.022
    The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.
    Matched MeSH terms: Titanium/toxicity*
  5. Harun AM, Awang H, Noor NFM, Makhatar NM, Yusoff ME, Affandi NDN, et al.
    Biomed Res Int, 2021;2021:6173143.
    PMID: 34859102 DOI: 10.1155/2021/6173143
    BACKGROUND: Potential antibacterial substances, such as titanium dioxide (TiO2), are being extensively studied throughout the research world. A modified hydrothermal nanotitania extraction was shown to inhibit Staphylococcus aureus growth in the laboratory. However, the toxicity effect of the extract on rats is unknown. In this study, we observed the effects of a modified hydrothermal nanotitania extraction on the skin and behavior of Sprague-Dawley rats.

    METHODS: Sprague-Dawley (Rattus norvegicus) rats were used as the experimental animals. The skin around the dorsum of the tested animals was shaved and pasted with 0.1 mg and 0.5 mg of the nanotitania extraction. The color and condition of the pasted area and the behavior of the animals were observed.

    RESULTS: 0.1 mg nanotitania extraction application on the dorsum of the rat produced no skin color changes at day 1, day 3, day 5, or day 7 postapplication. There were no changes in their behavior up to day 7 with no skin rashes or skin scratches seen or fur changes. However, 0.5 mg of nanotitania extraction resulted in redness and less fur regrowth at day 7.

    CONCLUSIONS: A 0.1 mg modified nanotitania extraction was observed to have no effect on the skin of Sprague-Dawley rats.

    Matched MeSH terms: Titanium/toxicity
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links