OBJECTIVE: The aim of this study is to evaluate the ICV in primary craniosynostosis patients after the cranial vault reshaping with or without FOA and to compare between syndromic and nonsyndromic synostosis group, to determine factors that associated with significant changes in the ICV postoperative, and to evaluate the resolution of copper beaten sign and improvement in neurodevelopmental delay after the surgery.
METHODS: This is a prospective observational study of all primary craniosynostosis patients who underwent operation cranial vault reshaping with or without FOA in Hospital Kuala Lumpur from January 2017 until Jun 2018. The ICV preoperative and postoperative was measured using the 3D computed tomography (CT) imaging and analyzed. The demographic data, clinical and radiological findings were identified and analyzed.
RESULTS: A total of 14 cases (6 males and 8 females) with 28 3D CT scans were identified. The mean age of patients was 23 months. Seven patients were having syndromic synostosis (4 Crouzon syndromes and 3 Apert syndromes) and 7 nonsyndromic synostosis. The mean preoperative ICV was 880 mL (range, 641-1234 mL), whereas the mean postoperative ICV was 1081 mL (range, 811-1385 mL). The difference was 201 mL which was statistically significant (P 1.0). However, there was 100% (n = 13) improvement of this copper beaten sign. However, the neurodevelopmental delay showed no improvement which was statistically not significant (P > 1.0).
CONCLUSION: Surgery in craniosynostosis patient increases the ICV besides it improves the shape of the head. From this study, the syndromic synostosis had better increment of ICV compared to nonsyndromic synostosis.
METHODS: This was a nonrandomized, prospective observational study conducted from September 2011 to January 2015 on patients with intracranial convexity and parasagittal meningiomas. Preoperative computed tomography brain scans were obtained in all patients to confirm bony hyperostosis. Intraoperatively, part of the hyperostotic bone was sent for histopathologic examination. The rest of the bone flap was refashioned by drilling off the hyperostotic part. The bone flap was put back over the craniotomy site after soaking in distilled water. All patients were followed up for tumor recurrence.
RESULTS: The study included 34 patients with convexity or parasagittal meningioma World Health Organization grade I-II who underwent Simpson grade Ia and IIa excision. Median follow-up was 63.5 months (mean 64.9 ± 9.4 months). The hyperostotic bone flap showed presence of tumor in 35% of patients. There were 2 patients with parasagittal meningiomas after Simpson grade IIa resections who developed tumor recurrences.
CONCLUSIONS: Our study found that meningioma recurrence was unlikely when autologous cranioplasty was done with refashioned hyperostotic bone. This could be done in the same setting with meningioma excision. There was no recurrence in convexity meningiomas at mean 5-year follow-up.
OBJECTIVE: We hypothesized that the risk of infections after primary cranioplasty in adult patients who underwent craniectomies for non-infection-related indications are no different when performed early or delayed. We tested this hypothesis in a prospective, multicenter, cohort study.
METHODS: Data were collected prospectively from 5 neurosurgical centers in the United Kingdom, Malaysia, Singapore, and Bangladesh. Only patients older than 16 years from the time of the non-infection-related craniectomy were included. The recruitment period was over 17 months, and postoperative follow-up was at least 6 months. Patient baseline characteristics, rate of infections, and incidence of hydrocephalus were collected.
RESULTS: Seventy patients were included in this study. There were 25 patients in the early cranioplasty cohort (cranioplasty performed before 12 weeks) and 45 patients in the late cranioplasty cohort (cranioplasty performed after 12 weeks). The follow-up period ranged between 16 and 34 months (mean, 23 months). Baseline characteristics were largely similar but differed only in prophylactic antibiotics received (P = 0.28), and primary surgeon performing cranioplasty (P = 0.15). There were no infections in the early cranioplasty cohort, whereas 3 infections were recorded in the late cohort. This did not reach statistical significance (P = 0.55).
CONCLUSIONS: Early cranioplasty in non-infection-related craniectomy is relatively safe. There does not appear to be an added advantage to delaying cranioplasties more than 12 weeks after the initial craniectomy in terms of infection reduction. There was no significant difference in infection rates or risk of hydrocephalus between the early and late cohorts.