Displaying all 3 publications

Abstract:
Sort:
  1. Moradi F, Ung NM, Mahdiraji GA, Khandaker MU, See MH, Taib NA, et al.
    Phys Med Biol, 2019 04 12;64(8):08NT04.
    PMID: 30840946 DOI: 10.1088/1361-6560/ab0d4e
    Ge-doped silica fibre (GDSF) thermoluminescence dosimeters (TLD) are non-hygroscopic spatially high-resolution radiation sensors with demonstrated potential for radiotherapy dosimetry applications. The INTRABEAM® system with spherical applicators, one of a number of recent electronic brachytherapy sources designed for intraoperative radiotherapy (IORT), presents a representative challenging dosimetry situation, with a low keV photon beam and a desired rapid dose-rate fall-off close-up to the applicator surface. In this study, using the INTRABEAM® system, investigations were made into the potential application of GDSF TLDs for in vivo IORT dosimetry. The GDSFs were calibrated over the respective dose- and depth-range 1 to 20 Gy and 3 to 45 mm from the x-ray probe. The effect of different sizes of spherical applicator on TL response of the fibres was also investigated. The results show the GDSF TLDs to be applicable for IORT dose assessment, with the important incorporated correction for beam quality effects using different spherical applicator sizes. The total uncertainty in use of this type of GDSF for dosimetry has been found to range between 9.5% to 12.4%. Subsequent in vivo measurement of skin dose for three breast patients undergoing IORT were performed, the measured doses being below the tolerance level for acute radiation toxicity.
    Matched MeSH terms: Radiation Dosimeters/standards*
  2. Rizk C, Long S, Okyar HB, Baradaran S, Al Fares E, Sangau JK, et al.
    Radiat Prot Dosimetry, 2019 Dec 31;187(4):418-425.
    PMID: 31605130 DOI: 10.1093/rpd/ncz182
    An intercomparison exercise (IC) on whole body dosemeters to determine the quantity personal dose equivalent Hp (10) in photon radiation fields was jointly organised and conducted by the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for individual monitoring services (IMS) in Asia and the Pacific region. This was arranged to help the IMS in the region to achieve a more accurate dosimetry service and to improve their performance. Twenty-four IMS participated in this IC. Four sets of dosemeters were irradiated using X-ray and gamma radiation qualities at 0° and 20° angle of incidence, respectively. All the IMS provided results that were within the acceptable limits defined by the IAEA. However, only a minority of participants reported confidence intervals that included the reference dose, for each exposure scenario. For few systems, the overall performance could be significantly improved by reviewing calibration procedures.
    Matched MeSH terms: Radiation Dosimeters/standards*
  3. Wong JHD, Bakhsh M, Cheah YY, Jong WL, Khor JS, Ng KH
    Radiat Prot Dosimetry, 2019 Dec 31;187(4):451-460.
    PMID: 31650160 DOI: 10.1093/rpd/ncz186
    This study characterises and evaluates an Al2O3:C-based optically stimulated luminescent dosemeter (OSLD) system, commercially known as the nanoDot™ dosemeter and the InLight® microStar reader, for personal and in vivo dose measurements in diagnostic radiology. The system characteristics, such as dose linearity, reader accuracy, reproducibility, batch homogeneity, energy dependence and signal stability, were explored. The suitability of the nanoDot™ dosemeters was evaluated by measuring the depth dose curve, in vivo dose measurement and image perturbation. The nanoDot™ dosemeters were observed to produce a linear dose with ±2.8% coefficient variation. Significant batch inhomogeneity (8.3%) was observed. A slight energy dependence (±6.1%) was observed between 60 and 140 kVp. The InLight® microStar reader demonstrated good accuracy and a reproducibility of ±2%. The depth dose curve measured using nanoDot™ dosemeters showed slightly lower responses than Monte Carlo simulation results. The total uncertainty for a single dose measurement using this system was 11%, but it could be reduced to 9.2% when energy dependence correction was applied.
    Matched MeSH terms: Radiation Dosimeters/standards*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links