Displaying all 3 publications

Abstract:
Sort:
  1. Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF
    Anal Biochem, 2020 01 15;589:113489.
    PMID: 31655050 DOI: 10.1016/j.ab.2019.113489
    Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
    Matched MeSH terms: Poultry Products/microbiology*
  2. Chan YY, Abd Nasir MH, Yahaya MA, Salleh NM, Md Dan AD, Musa AM, et al.
    Int J Food Microbiol, 2008 Feb 29;122(1-2):221-6.
    PMID: 18187222 DOI: 10.1016/j.ijfoodmicro.2007.11.063
    A total of 225 samples from poultry farms and the surrounding environment were screened for vancomycin-resistant enterococci (VRE) and bifunctional aminoglycoside-resistant enterococci using conventional microbiological tests and a nanoplex polymerase chain reaction (PCR) assay. Three (1.3%) of the samples were found to contain vancomycin-resistant isolates (MIC>256 microg/mL) that had a vanA genotype. The three vanA positive VRE isolates were identified as different species. Only one isolate (Enterococcus faecium F 4/13_54) was sensitive to teicoplanin (MIC<0. 12-0.35 microg/mL); the other two VRE (E. faecalis A 21_35 and E. gallinarum F 5/10_1) were resistant to teicoplanin (MIC 3.6-->16 microg/mL). The vanC genotype was observed in nine (4%) of the samples collected. High-level gentamicin-resistant (HLGR) enterococci (with MIC ranging between 100 and 500 microg/mL) were detected in 44 samples. However, only 40 of these were found to possess the aac(6')-aph(2'') gene. The overall prevalence of VRE among the samples from the poultry farms and environment was 5.3%, but the prevalence of the clinically significant vanA VRE was 1.3%, and the prevalence of bifunctional aminoglycoside-resistant enterococci was slightly higher, at 19.5%.
    Matched MeSH terms: Poultry Products/microbiology
  3. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M
    J Microbiol Methods, 2001 Aug;46(2):131-9.
    PMID: 11412923
    Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.
    Matched MeSH terms: Poultry Products/microbiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links