METHODS: A two-sample bidirectional MR analysis was conducted using data from individuals of European ancestry, utilizing genome-wide association studies (GWAS) statistics. The study selected instrumental single nucleotide polymorphisms (SNPs) significantly associated with circulating cytokines and applied multiple MR methods, including inverse variance weighted (IVW), Weighted Median, MR-Egger, Weighted Mode, Simple Mode, and MR-PRESSO. The traits analyzed were appendicular lean mass (ALM) and grip strength. Heterogeneity, robustness, and consistency of results were assessed using Cochran's Q statistic, MR-Egger regression, and "leave-one-out" sensitivity analyses.
RESULTS: The IVM-MR analysis showed a casual association between genetically predicted circulating levels of interleukin-16 and both ALM and grip strength (ALM: OR = 0.990, 95% CI: 0.980-1.000, p = .049; grip strength: OR = 0.971, 95% CI: 0.948-0.995, p = .020). Additionally, interferon-gamma-induced protein 10 (IP-10), interleukin-1-beta (IL-1β), and hepatocyte growth factor (HGF) were correlated with ALM and vascular endothelial growth factor (VEGF), interleukin-12 (IL-12), and interleukin-5 (IL-5) with grip strength. Comparable results were confirmed via the MR-Egger, Weighted Median, Weighted Mode, and Simple Mode methods. Sensitivity analysis showed no horizontal pleiotropy to bias the causal estimates.
CONCLUSION: The results suggest a significant causal effect of inflammatory cytokines on sarcopenia, offering new avenues for therapeutic target development. However, the study's focus on a European ancestry cohort limits its generalizability to other populations. Future research should aim to include diverse ethnic groups to validate and broaden these findings, thereby enhancing our understanding of sarcopenia's mechanisms in a global context.
METHODS: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach.
RESULTS: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers.
CONCLUSIONS: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results.
FUNDING: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.
METHODS: Information regarding the consumption of coffee, tea, and alcohol was collected from the UK Biobank, with sample sizes of 428,860, 447,485, and 462,346 individuals, respectively. Data on 41 inflammatory cytokines were obtained from summary statistics of 8293 healthy participants from Finnish cohorts.
RESULTS: The consumption of coffee was found to be potentially associated with decreased levels of Macrophage colony-stimulating factor (β = -0.57, 95% CI -1.06 ~ -0.08; p = 0.022) and Stem cell growth factor beta (β = -0.64, 95% CI -1.16 ~ -0.12; p = 0.016), as well as an increase in TNF-related apoptosis-inducing ligand (β = 0.43, 95% CI 0.06 ~ 0.8; p = 0.023) levels. Conversely, tea intake was potentially correlated with a reduction in Interleukin-8 (β = -0.45, 95% CI -0.9 ~ 0; p = 0.045) levels. Moreover, our results indicated an association between alcohol consumption and decreased levels of Regulated on Activation, Normal T Cell Expressed and Secreted (β = -0.24, 95% CI -0.48 ~ 0; p = 0.047), as well as an increase in Stem cell factor (β = 0.17, 95% CI 0.02 ~ 0.31; p = 0.023) and Stromal cell-derived factor-1 alpha (β = 0.20, 95% CI 0.04 ~ 0.36; p = 0.013).
CONCLUSION: Revealing the interactions between beverage consumption and various inflammatory cytokines may lead to the discovery of novel therapeutic targets, thereby facilitating dietary interventions to complement clinical disease treatments.
METHODS: The study employed a bidirectional MR analysis with two samples, utilizing a freely accessible genome-wide association study (GWAS). Furthermore, the primary analysis employed the inverse variance weighted (IVW) method. To determine whether the lipid profiles were associated with periodontitis, a variety of sensitivity analyses (including MR-Egger regression, MR-PRESSO, and weighted median), as well as multivariable MR, were employed.
RESULTS: MR analysis performed by IVW did not reveal any relationship between periodontitis and low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), or total cholesterol (TC). It was also found that LDL, HDL, TG, and TC were not associated to periodontitis. Furthermore, the MR estimations exhibited consistency with other MR sensitivity and multivariate MR (MVMR) analyses. These results show that the correlation between serum lipid levels and periodontitis could not be established.
CONCLUSION: The finding indicates a negligible link between periodontitis and serum lipid levels were identified, despite previous observational studies reporting a link between periodontitis and serum lipid levels.
METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.
RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.
CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.
IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.
METHODS: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P
PATIENTS AND METHODS: A nested case-control study was conducted with the European Prospective Investigation into Cancer and Nutrition (EPIC) with 1871 cases and 1871 matched controls. Conditional logistic regression analysis was used to investigate the association of pre-diagnostic circulating MSP with risk of incident prostate cancer overall and by tumour subtype. EPIC-derived estimates were combined with published data to calculate an MR estimate using two-sample inverse-variance method.
RESULTS: Plasma MSP concentrations were inversely associated with prostate cancer risk after adjusting for total prostate-specific antigen concentration [odds ratio (OR) highest versus lowest fourth of MSP = 0.65, 95% confidence interval (CI) 0.51-0.84, Ptrend = 0.001]. No heterogeneity in this association was observed by tumour stage or histological grade. Plasma MSP concentrations were 66% lower in rs10993994 TT compared with CC homozygotes (per allele difference in MSP: 6.09 ng/ml, 95% CI 5.56-6.61, r2=0.42). MR analyses supported a potentially causal protective association of MSP with prostate cancer risk (OR per 1 ng/ml increase in MSP for MR: 0.96, 95% CI 0.95-0.97 versus EPIC observational: 0.98, 95% CI 0.97-0.99). Limitations include lack of complete tumour subtype information and more complete information on the biological function of MSP.
CONCLUSIONS: In this large prospective European study and using MR analyses, men with high circulating MSP concentration have a lower risk of prostate cancer. MSP may play a causally protective role in prostate cancer.
METHODS: We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk, using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI with breast cancer risk using weighted Cox models. All statistical tests were two-sided.
RESULTS: Observed height was positively associated with breast cancer risk (HR = 1.09 per 10 cm increase, 95% confidence interval [CI] = 1.0 to 1.17; P = 1.17). Height genetic score was positively associated with breast cancer, although this was not statistically significant (per 10 cm increase in genetically predicted height, HR = 1.04, 95% CI = 0.93 to 1.17; P = .47). Observed BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR = 0.94, 95% CI = 0.90 to 0.98; P = .007). BMI genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI, HR = 0.87, 95% CI = 0.76 to 0.98; P = .02). BMI was primarily associated with premenopausal breast cancer.
CONCLUSION: Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve cancer management.
METHODS AND FINDINGS: Genetic instruments to proxy 12 risk factors were constructed by identifying single nucleotide polymorphisms (SNPs) that were robustly (P < 5 × 10-8) and independently associated with each respective risk factor in previously reported genome-wide association studies. These risk factors included genetic liability to 3 factors (endometriosis, polycystic ovary syndrome, type 2 diabetes) scaled to reflect a 50% higher odds liability to disease. We obtained summary statistics for the association of these SNPs with risk of overall and histotype-specific invasive epithelial ovarian cancer (22,406 cases; 40,941 controls) and low malignant potential tumours (3,103 cases; 40,941 controls) from the Ovarian Cancer Association Consortium (OCAC). The OCAC dataset comprises 63 genotyping project/case-control sets with participants of European ancestry recruited from 14 countries (US, Australia, Belarus, Germany, Belgium, Denmark, Finland, Norway, Canada, Poland, UK, Spain, Netherlands, and Sweden). SNPs were combined into multi-allelic inverse-variance-weighted fixed or random effects models to generate effect estimates and 95% confidence intervals (CIs). Three complementary sensitivity analyses were performed to examine violations of MR assumptions: MR-Egger regression and weighted median and mode estimators. A Bonferroni-corrected P value threshold was used to establish strong evidence (P < 0.0042) and suggestive evidence (0.0042 < P < 0.05) for associations. In MR analyses, there was strong or suggestive evidence that 2 of the 12 risk factors were associated with invasive epithelial ovarian cancer and 8 of the 12 were associated with 1 or more invasive epithelial ovarian cancer histotypes. There was strong evidence that genetic liability to endometriosis was associated with an increased risk of invasive epithelial ovarian cancer (odds ratio [OR] per 50% higher odds liability: 1.10, 95% CI 1.06-1.15; P = 6.94 × 10-7) and suggestive evidence that lifetime smoking exposure was associated with an increased risk of invasive epithelial ovarian cancer (OR per unit increase in smoking score: 1.36, 95% CI 1.04-1.78; P = 0.02). In analyses examining histotypes and low malignant potential tumours, the strongest associations found were between height and clear cell carcinoma (OR per SD increase: 1.36, 95% CI 1.15-1.61; P = 0.0003); age at natural menopause and endometrioid carcinoma (OR per year later onset: 1.09, 95% CI 1.02-1.16; P = 0.007); and genetic liability to polycystic ovary syndrome and endometrioid carcinoma (OR per 50% higher odds liability: 0.89, 95% CI 0.82-0.96; P = 0.002). There was little evidence for an association of genetic liability to type 2 diabetes, parity, or circulating levels of 25-hydroxyvitamin D and sex hormone binding globulin with ovarian cancer or its subtypes. The primary limitations of this analysis include the modest statistical power for analyses of risk factors in relation to some less common ovarian cancer histotypes (low grade serous, mucinous, and clear cell carcinomas), the inability to directly examine the association of some ovarian cancer risk factors that did not have robust genetic variants available to serve as proxies (e.g., oral contraceptive use, hormone replacement therapy), and the assumption of linear relationships between risk factors and ovarian cancer risk.
CONCLUSIONS: Our comprehensive examination of possible aetiological drivers of ovarian carcinogenesis using germline genetic variants to proxy risk factors supports a role for few of these factors in invasive epithelial ovarian cancer overall and suggests distinct aetiologies across histotypes. The identification of novel risk factors remains an important priority for the prevention of epithelial ovarian cancer.
METHODS: The case-control portion of the study was conducted in nine UK centers with men ages 50-69 years who underwent prostate-specific antigen screening for prostate cancer within the Prostate Testing for Cancer and Treatment (ProtecT) trial. Two data sources were used to appraise causality: a genome-wide association study (GWAS) of metabolites in 24,925 participants and a GWAS of prostate cancer in 44,825 cases and 27,904 controls within the Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.
RESULTS: Thirty-five metabolites were strongly associated with prostate cancer (P < 0.0014, multiple-testing threshold). These fell into four classes: (i) lipids and lipoprotein subclass characteristics (total cholesterol and ratios, cholesterol esters and ratios, free cholesterol and ratios, phospholipids and ratios, and triglyceride ratios); (ii) fatty acids and ratios; (iii) amino acids; (iv) and fluid balance. Fourteen top metabolites were proxied by genetic variables, but MR indicated these were not causal.
CONCLUSIONS: We identified 35 circulating metabolites associated with prostate cancer presence, but found no evidence of causality for those 14 testable with MR. Thus, the 14 MR-tested metabolites are unlikely to be mechanistically important in prostate cancer risk.
IMPACT: The metabolome provides a promising set of biomarkers that may aid prostate cancer classification.
OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.
DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.
RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13).
CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.
PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.