Displaying all 8 publications

Abstract:
Sort:
  1. Ilangkovan M, Jantan I, Mesaik MA, Bukhari SN
    Phytother Res, 2016 Aug;30(8):1330-8.
    PMID: 27137750 DOI: 10.1002/ptr.5633
    Phyllanthus amarus has been shown to have strong inhibitory effects on phagocytic activity of human neutrophils and on cellular immune responses in Wistar-Kyoto rats. In this study, we investigated the effects of daily treatment of standardized extract of P. amarus at 50, 100 and 200 mg/kg for 14 days in Balb/C mice by measuring the myeloperoxidase activity (MPO), nitric oxide (NO) release, macrophage phagocytosis, swelling of footpad in delayed type hypersensitivity (DTH), and serum immunoglobulins, ceruloplasmin and lysozyme levels. Qualitative and quantitative analyses of the extract using validated reversed-phase HPLC methods identified phyllanthin, hypophyllanthin, corilagin and geraniin as the biomarkers. Significant dose-dependent inhibitions of MPO activity and NO release were observed in treated mice. The extract also inhibited E. coli phagocytic capacity of peritoneal macrophages of treated mice and inhibited the sheep red blood cells (sRBC)-induced swelling rate of mice paw in the DTH. There was also a significant decrease in non-specific humoral immunity including ceruloplasmin and lysozyme levels in the extract-fed groups as well as the release of serum level immunoglobulins. The strong inhibitory effects of the extract on the cellular and humoral immune responses suggest the potential of the plant to be developed as an effective immunosuppressive agent. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Immunity, Humoral/drug effects*
  2. Arshad L, Jantan I, Bukhari SNA, Fauzi MB
    Curr Pharm Biotechnol, 2018;19(6):468-482.
    PMID: 29968535 DOI: 10.2174/1389201019666180703092723
    BACKGROUND: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has previously been shown to manifest potent immunosuppressive effects on the in vitro phagocytosis process of human neutrophils.

    OBJECTIVE: In the present study, BBP was investigated for it's in vivo innate and adaptive immune responses mediated by different humoral and cellular immune factors.

    METHODS: Male Balb/c mice were orally fed with BBP (5, 10 and 20 mg/kg) for a period of 14 days and immunized with sheep red blood cells (sRBC) on day 0 for the determination of adaptive responses. The effects of BBP on phagocytosis process of neutrophils isolated from blood of treated/untreated animals were determined. The ceruloplasmin and lysozyme serum levels and myeloperoxidase (MPO) plasma level were also monitored. The mechanism was further explored by assessing its effects on the proliferation of T and B lymphocytes, T-lymphocytes subsets CD4+ and CD8+ and on the secretion of Th1/Th2 cytokines as well as serum immunoglobulins (IgG, IgM) and delayed type hypersensitivity (DTH) reaction.

    RESULTS: BBP showed a significant dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity and reactive oxygen species (ROS) production. In comparison to the sensitized control group, a dose-dependent inhibition was observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines. Moreover, a statistically significant decrease was perceived in serum levels of ceruloplasmin, lysozyme and immunoglobulins and MPO plasma level of BBP-treated mice. BBP also dose-dependently inhibited sheep red blood cells (sRBC)-induced swelling rate of mice paw in DTH.

    CONCLUSION: These findings suggest the potential of BBP as a potent immunosuppressive agent.

    Matched MeSH terms: Immunity, Humoral/drug effects*
  3. Alam J, Jantan I, Kumolosasi E, Nafiah MA, Mesaik MA
    Curr Pharm Biotechnol, 2018;19(14):1156-1169.
    PMID: 30539691 DOI: 10.2174/1389201020666181211124954
    BACKGROUND: Standardized extract of Phyllanthus amarus has been shown to possess inhibitory effects on cellular and humoral immune responses in Wistar-Kyoto rats and Balb/c mice.

    OBJECTIVE: In the present study, the standardized extract of P. amarus was investigated for its suppressive effects on type II collagen-induced rheumatoid arthritis (TCIA) in Sprague Dawley rats.

    METHOD: The major components of the extracts, lignans and phenolic compounds were analysed by using a validated reversed phase HPLC and LC-MS/MS. A rheumatoid arthritis rat model was induced by administering a bovine type II collagen emulsion subcutaneously at the base of tail, on day 0 and 7 of the experiment. Effects of the extract on severity assessment, changes in the hind paw volume, bone mineral density, body weight and body temperature were measured. Concentrations of cytokines (TNF-α, IL-1β, IL-1α, IL-6) released, matrix metalloproteinases (MMP-1, MMP-3 MMP-9) and their inhibitor (TIMP-1), haematological and biochemical changes were also measured. ELISA was used to measure the cytokines and proteinases in the rat serum and synovial fluid according to manufacturer's instructions.

    RESULTS: The extract dose-dependently modulated the progression in physical parameters (i.e. decrease in body weight, increase in body temperature, reduced hind paw volume, reduced the severity of arthritis), bone mineral density, haematological and biochemical perturbations, serum cytokines production and levels of matrix metalloproteinases and their inhibitor in the synovial fluid. Histopathological examination of the knee joint also revealed that the extract effectively reduced synovitis, pannus formation, bone resorption and cartilage destruction.

    CONCLUSION: The results suggest that the oral administration of a standardized extract of P. amarus was able to suppress the humoral and cellular immune responses to type II collagen, resulting in the reduction of the development of TCIA in the rats.

    Matched MeSH terms: Immunity, Humoral/drug effects
  4. Jantan I, Haque MA, Ilangkovan M, Arshad L
    Int Immunopharmacol, 2019 Aug;73:552-559.
    PMID: 31177081 DOI: 10.1016/j.intimp.2019.05.035
    Zerumbone exhibited various biological properties including in vitro immunosuppressive effects. However, its modulatory activity on the immune responses in experimental animal model is largely unknown. This investigation was conducted to explore the effects of daily treatment of zerumbone (25, 50, and 100 mg/kg) isolated from Zingiber zerumbet rhizomes for 14 days on various cellular and humoral immune responses in Balb/C mice. For measurement of adaptive immunity, sheep red blood cells (sRBC) were used to immunize the mice on day 0 and orally fed with similar doses of zerumbone for 14 days. The effects of zerumbone on phagocytosis, nitric oxide (NO) release, myeloperoxidase (MPO) activity, proliferation of T and B cells, lymphocyte phenotyping, cytokines release in serum by activated T cells, delayed type hypersensitivity (DTH) and immunoglobulins production (IgG and IgM) were investigated. Zerumbone downregulated the engulfment of E. coli by peritoneal macrophages and the release of NO and MPO in a concentration-dependent manner. Zerumbone showed significant and concentration-dependent suppression of T and B lymphocytes proliferation and inhibition of the Th1 and Th2 cytokines release. At higher concentrations of zerumbone, the % expression of CD4+ and CD8+ in splenocytes was significantly inhibited. Zerumbone also concentration-dependently demonstrated strong suppression on sRBC-triggered swelling of mice paw in DTH. Substantial suppression of anti-sRBC immunoglobulins antibody titer was noted in immunized and zerumbone-treated mice in a concentration-dependent manner. The potent suppressive effects of zerumbone on the immune responses suggest that zerumbone can be a potential candidate for development of immunosuppressive agent.
    Matched MeSH terms: Immunity, Humoral/drug effects
  5. Ilangkovan M, Jantan I, Bukhari SN
    Phytomedicine, 2016 Nov 15;23(12):1441-1450.
    PMID: 27765364 DOI: 10.1016/j.phymed.2016.08.002
    BACKGROUND: Phyllanthin found in many Phyllanthus species has various biochemical and pharmacological properties especially on its hepatoprotective effects. However, its effect on the immune system has not been well documented.

    PURPOSE: In the present study, phyllanthin isolated from Phyllanthus amarus was investigated for its immunosuppressive effects on various cellular and humoral immune responses in Balb/C mice.

    METHODS: Male mice were treated daily at 20, 40 and 100mg/kg of phyllanthin for 14 days by oral gavage. The effects of phyllanthin on cellular immune responses in treated /non treated mice were determined by measuring CD 11b/CD 18 integrin expression, phagocytosis, nitric oxide (NO) production, myeloperoxidase activity (MPO), T and B cells proliferation, lymphocyte phenotyping, serum cytokines production by activated T-cells and delayed type hypersensitivity (DTH). Its effects on humoral immune responses were evaluated by determining the serum levels of lysozyme and ceruloplasmin, and immunoglobulins (IgG and IgM).

    RESULTS: Phyllanthin dose-dependently inhibited CD11b/CD18 adhesion, the engulfment of E. coli by peritoneal macrophages molecules, NO and MPO release in treated mice. Phyllanthin caused significant and dose-dependent inhibition of T and B lymphocytes proliferation and down-regulation of the Th1 (IL-2 and IFN-γ) and Th2 (IL-4) cytokines. Phyllanthin at 100mg/kg caused a significant reduction in the percentage expression of CD4(+) and CD8(+) in splenocytes and the inhibition was comparable to that of cyclosporin A at 50mg/kg. At 100mg/kg, phyllanthin also dose-dependently exhibited strong inhibition on the sheep red blood cell (sRBC)-induced swelling rate of mice paw in DTH. Significant inhibition of serum levels of ceruloplasmin and lysozyme were observed in mice fed with higher doses (40 and 100mg/kg) of phyllanthin. Anti-sRBC immunoglobulins (IgM and IgG) antibody titer was down-regulated in immunized and phyllanthin-treated mice in a dose-dependent manner with maximum inhibition being observed at 100mg/kg.

    CONCLUSION: The strong inhibitory effects of phyllanthin on the cellular and humoral immune responses suggest that phyllanthin may be a good candidate for development into an effective immunosuppressive agent.

    Matched MeSH terms: Immunity, Humoral/drug effects*
  6. Azizi Jalilian F, Yusoff K, Suhaimi S, Amini R, Sekawi Z, Jahanshiri F
    J Biol Regul Homeost Agents, 2015 Jan-Mar;29(1):7-18.
    PMID: 25864737
    Human respiratory syncytial virus is the most common cause of bronchiolitis and other respiratory infections in infants and the elderly worldwide. We have developed two new oral vaccines using Salmonella typhi TY21a to carry and express the immunogenic epitopes of RSV fusion (F) and attachment (G) glycoproteins on its surface, separately. To evaluate the efficacy of the designed vaccines, BALB/c mice were orally immunized and then infected with RSV. Immune response analyses showed that cellmediated, mucosal and humoral immunity in the vaccinated mice were significantly enhanced compared to the control group. Both vaccines generated a balanced Th1/Th2 immune response which is crucial for efficiency of vaccines against RSV. Furthermore, histopathological examination proved that these vaccines were safe as they did not cause any Th2-associated adverse effects in the lungs of RSV-infected mice. The findings of this research suggest that Salmonella-F and Salmonella-G vaccine candidates may have strong potential to prevent RSV infection.
    Matched MeSH terms: Immunity, Humoral/drug effects
  7. Faiz NM, Cortes AL, Guy JS, Reddy SM, Gimeno IM
    J Gen Virol, 2018 07;99(7):927-936.
    PMID: 29767614 DOI: 10.1099/jgv.0.001076
    Marek's disease virus (MDV) is a herpesvirus that induces lymphoma and a variety of non-neoplastic syndromes in chickens. Furthermore, very virulent plus (vv+) MDVs induce a form of immunosuppression (late-MDV-IS) that might involve both neoplastic and non-neoplastic mechanisms. The objective of this study was to evaluate whether the attenuation of MDV-induced tumours and late-MDV-IS occurs simultaneously or can be dissociated. The immunosuppressive ability of three viruses derived from vv+ MDV strain 686 (wild-type 686, the somewhat attenuated molecular clone 686-BAC, and the nononcogenic molecular clone lacking the two copies of the oncogene meq 686-BACΔMEQ) was evaluated. Late-MDV-IS was evaluated indirectly by assessing the negative effect of MDV strains on the protection conferred by infectious laryngotracheitis (ILT) vaccines. Our results showed that the ability to induce late-MDV-IS was attenuated before the ability to induce tumours. Strain 686 induced both tumours and late-MDV-IS, 686-BAC induced tumours but did not induce late-MDV-IS and 686-BACΔMEQ did not induce either tumours or late-MDV-IS. Further comparison of strains 686 and 686-BAC revealed that strain 686 reduced the humoral immune responses to ILTV (1132 vs 2167) more severely, showed higher levels of meq transcripts (2.1E+09 vs 4.98E+8) and higher expression of MDV microRNAs (mdv1-miR-M4-5p and mdv1-miR-M2-3p) in the spleen, and further reduced the percentage of CD45+-MHC-I+splenocytes (13 vs32 %) compared to molecular clone 686-BAC. This study suggests that the immunosuppressive ability of MDV might follow a continuous spectrum and only the most virulent MDVs can overcome a certain threshold level and induce clinical MDV-IS in the ILT model.
    Matched MeSH terms: Immunity, Humoral/drug effects
  8. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
    Matched MeSH terms: Immunity, Humoral/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links