Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Halmi MFA, Simarani K
    J Environ Qual, 2024;53(4):546-551.
    PMID: 38840421 DOI: 10.1002/jeq2.20588
    Biochar produced from lignocellulosic biomass offers an opportunity to recycle waste into a valuable soil amendment. The application of biochar has been proposed to mitigate climate change by sequestering carbon in the soil. However, the field impact of biochar treatment on the cellulolytic microbial populations involved in the earlier steps of cellulose degradation is poorly understood. A field trial spanning three consecutive crop cycles of Zea mays was conducted in a degraded tropical Ultisol of Peninsular Malaysia. The soil was amended with two contrasting biochar made from oil palm kernel shells (pyrolyzed at 400°C) and rice husks (gasified at 800°C) with or without fertilizer supplementation. Soil samples were taken at each harvesting stage and analyzed for total organic carbon, labile active organic carbon, total cellulase, and β-glucosidase. Microbial glycoside hydrolase family 6 (GH6) cellulase genes and transcripts, involved in the early steps of cellulose degradation, were quantified from the extracted soil deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), respectively. Total organic carbon, labile active organic carbon, and β-glucosidase activity were significantly increased, while no effect on total cellulase activity was found. Both biochars stimulated the total population (DNA-derived) abundance of soil microorganisms harboring the GH6 cellulase genes. The biochar amendment did not affect the active population (RNA-derived) of the GH6 cellulolytic community, showing no significant changes in transcript expression. This indirectly corroborates the role of biochar as a potential carbon sequester in the soil.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
  2. Ismail BS, Ampong N, Omar O
    Microbios, 2000;103(405):73-83.
    PMID: 11092189
    Effects of metsulphuron-methyl on the activities of amylase, invertase and xylanase in loamy sand and clay were evaluated for up to 28 days under laboratory conditions. Metsulphuron-methyl at 1.0 microg/g caused a significant reduction in amylase, invertase and xylanase activities for the entire period of study, especially at 28 days incubation in both soils. The lowest activities of the three enzymes were observed in the presence of 5.0 microg/g at 28 days incubation.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  3. Teh AH, Fazli NH, Furusawa G
    Appl Microbiol Biotechnol, 2020 Jan;104(2):633-641.
    PMID: 31784792 DOI: 10.1007/s00253-019-10237-y
    PdAgaC from the marine bacterium Persicobacter sp. CCB-QB2 is a β-agarase belonging to the glycoside hydrolase family 16 (GH16). It is one of only a handful of endo-acting GH16 β-agarases able to degrade agar completely to produce neoagarobiose (NA2). The crystal structure of PdAgaC's catalytic domain, which has one of the highest Vmax value at 2.9 × 103 U/mg, was determined in order to understand its unique mechanism. The catalytic domain is made up of a typical β-jelly roll fold with two additional insertions, and a well-conserved but wider substrate-binding cleft with some minor changes. Among the unique differences, two unconserved residues, Asn226 and Arg286, may potentially contribute additional hydrogen bonds to subsites -1 and +2, respectively, while a third, His185 from one of the additional insertions, may further contribute another bond to subsite +2. These additional hydrogen bonds may probably have enhanced PdAgaC's affinity for short agaro-oligosaccharides such as neoagarotetraose (NA4), rendering it capable of binding NA4 strongly enough for rapid degradation into NA2.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
  4. Lazan H, Ng SY, Goh LY, Ali ZM
    Plant Physiol Biochem, 2004 Dec;42(11):847-53.
    PMID: 15694277
    The potential significance of the previously reported papaya (Carica papaya L.) beta-galactosidase/galactanase (beta-d-galactoside galactohydrolase; EC 3.2.1.23) isoforms, beta-gal I, II and III, as softening enzymes during ripening was evaluated for hydrolysis of pectins while still structurally attached to unripe fruit cell wall, and hemicelluloses that were already solubilized in 4 M alkali. The enzymes were capable of differentially hydrolyzing the cell wall as evidenced by increased pectin solubility, pectin depolymerization, and degradation of the alkali-soluble hemicelluloses (ASH). This enzyme catalyzed in vitro changes to the cell walls reflecting in part the changes that occur in situ during ripening. beta-Galactosidase II was most effective in hydrolyzing pectin, followed by beta-gal III and I. The reverse appeared to be true with respect to the hemicelluloses. Hemicellulose, which was already released from any architectural constraints, seemed to be hydrolyzed more extensively than the pectins. The ability of the beta-galactanases to markedly hydrolyze pectin and hemicellulose suggests that galactans provide a structural cross-linkage between the cell wall components. Collectively, the results support the case for a functional relevance of the papaya enzymes in softening related changes during ripening.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  5. Kahar UM, Chan KG, Sani MH, Mohd Noh NI, Goh KM
    Int J Biol Macromol, 2017 Nov;104(Pt A):322-332.
    PMID: 28610926 DOI: 10.1016/j.ijbiomac.2017.06.054
    Type I pullulanase from Anoxybacillus sp. SK3-4 (PulASK) is an unusual debranching enzyme that specifically hydrolyzes starch α-1,6 linkages at long branches producing oligosaccharides (≥G8), but is nonreactive against short branches; thus, incapable of producing reducing sugars (G1-G7). We report on the effects of both single and co-immobilization of PulASK on product specificity. PulASK was purified and immobilized through covalent attachment to three epoxides (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Following immobilization, all PulASK derivatives were active on both short and long branches in starch producing reducing sugars (predominantly maltotriose) and oligosaccharides (≥G8), respectively, a feature that is absent in the free enzyme. This study also demonstrated that co-immobilization of PulASK and α-amylase from Anoxybacillus sp. SK3-4 (TASKA) on ReliZyme HFA403/M significantly changed the product specificity compared to the free enzymes alone or individually immobilized enzymes. In conclusion, individual or co-immobilization caused changes in the product specificity, presumably due to changes in the enzyme binding pocket caused by the influence of carrier surface properties (hydrophobic or hydrophilic) and the lengths of the spacer arms.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  6. Sieo CC, Abdullah N, Tan WS, Ho YW
    Poult Sci, 2005 May;84(5):734-41.
    PMID: 15913185
    Two experiments were conducted to study the effects of beta-glucanase produced by transformed Lactobacillus strains on the intestinal characteristics and feed passage rate of broiler chickens fed barley-based diets. Supplementation of transformed Lactobacillus strains to the diet of chickens significantly (P < 0.05) reduced the intestinal fluid viscosity by 21 to 46% compared with chickens fed an unsupplemented diet or a diet supplemented with parental Lactobacillus strains. The relative weights of pancreas, liver, duodenum, jejunum, ileum, ceca, and colon were reduced (P < 0.05) by 6 to 27%, and the relative length of duodenum, jejunum, ileum, and ceca was reduced (P < 0.05) by 8 to 15%. Histological examination of the intestinal tissues showed that the jejunal villus height of chickens fed a diet supplemented with transformed Lactobacillus strains was significantly (P < 0.05) higher than that of chickens fed other dietary treatments. The transformed Lactobacillus strains were found to reduce (P < 0.05) the time of feed passage rate by 2.2 h. Supplementation of transformed Lactobacillus strains to the diet improved the intestinal characteristics and feed, passage rate of the chickens.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  7. Sieo CC, Abdullah N, Tan WS, Ho YW
    Br Poult Sci, 2005 Jun;46(3):333-9.
    PMID: 16050187
    The effects of beta-glucanase expressed by transformed Lactobacillus strains on growth performance, apparent digestibilities of dry matter and crude protein, and apparent metabolisable energy were studied. Two hundred and forty 1-d-old chicks (Avian-43) were randomly divided into three dietary treatment groups and fed with the following diets: (i) basal diet (control) (BD); (ii) basal diet with parental Lactobacillus strains (BDP) and (iii) basal diet with transformed Lactobacillus strains (BDT). At 21 d of age, the body weight, body weight gain and feed conversion ratio of the BDT-fed chickens were significantly improved. At 14 and 21 d of age, the proportions of dry matter in the duodenum, jejunum, ileum, caeca and excreta of chickens given the BDT diet were significantly higher than those of chickens given the BD and BDP diets. Apparent metabolisable energy, digestibilities of crude protein and dry matter were also significantly improved (by 3.5, 5.6 and 3.5%, respectively) by the BDT diet. These results showed that the transformed Lactobacillus strains improved digestibility as well as enhanced the growth performance of chickens.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  8. Abdul Karim MH, Lam MQ, Chen SJ, Yahya A, Shahir S, Shamsir MS, et al.
    Arch Microbiol, 2020 Nov;202(9):2591-2597.
    PMID: 32607725 DOI: 10.1007/s00203-020-01967-z
    To date, the genus Parvularcula consists of 6 species and no potential application of this genus was reported. Current study presents the genome sequence of Parvularcula flava strain NH6-79 T and its cellulolytic enzyme analysis. The assembled draft genome of strain NH6-79 T consists of 9 contigs and 7 scaffolds with 3.68 Mbp in size and GC content of 59.87%. From a total of 3,465 genes predicted, 96 of them are annotated as glycoside hydrolases (GHs). Within these GHs, 20 encoded genes are related to cellulosic biomass degradation, including 12 endoglucanases (5 GH10, 4 GH5, and 3 GH51), 2 exoglucanases (GH9) and 6 β-glucosidases (GH3). In addition, highest relative enzyme activities (endoglucanase, exoglucanase, and β-glucosidase) were observed at 27th hour when the strain was cultured in the carboxymethyl cellulose/Avicel®-containing medium for 45 h. The combination of genome analysis with experimental studies indicated the ability of strain NH6-79 T to produce extracellular endoglucanase, exoglucanase, and β-glucosidase. These findings suggest the potential of Parvularcula flava strain NH6-79 T in cellulose-containing biomass degradation and that the strain could be used in cellulosic biorefining process.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  9. Rai KM, Balasubramanian VK, Welker CM, Pang M, Hii MM, Mendu V
    BMC Plant Biol, 2015;15:187.
    PMID: 26232118 DOI: 10.1186/s12870-015-0576-4
    The plant cell wall serves as a primary barrier against pathogen invasion. The success of a plant pathogen largely depends on its ability to overcome this barrier. During the infection process, plant parasitic nematodes secrete cell wall degrading enzymes (CWDEs) apart from piercing with their stylet, a sharp and hard mouthpart used for successful infection. CWDEs typically consist of cellulases, hemicellulases, and pectinases, which help the nematode to infect and establish the feeding structure or form a cyst. The study of nematode cell wall degrading enzymes not only enhance our understanding of the interaction between nematodes and their host, but also provides information on a novel source of enzymes for their potential use in biomass based biofuel/bioproduct industries. Although there is comprehensive information available on genome wide analysis of CWDEs for bacteria, fungi, termites and plants, but no comprehensive information available for plant pathogenic nematodes. Herein we have performed a genome wide analysis of CWDEs from the genome sequenced phyto pathogenic nematode species and developed a comprehensive publicly available database.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
  10. Hafizah NF, Teh AH, Furusawa G
    Appl Biochem Biotechnol, 2019 Mar;187(3):770-781.
    PMID: 30073451 DOI: 10.1007/s12010-018-2849-5
    Persicobacter sp. CCB-QB2 belonging to the family Flammeovirga is an agarolytic bacterium and exhibits a diauxic growth in the presence of tryptone and agarose. A glycoside hydrolase (GH) 16 β-agarase, PdAgaC, was identified in the genome of the bacterium and was highly expressed during the second growth phase, indicating the agarase may play an important role in the diauxic growth. In this study, the catalytic domain of PdAgaC (PdAgaCgh) was cloned and characterized. PdAgaCgh showed thermostability at 50 °C and tolerance towards several detergents. In addition, the activity of PdAgaCgh after incubation with 0.1% of SDS and Triton X-100 increased approximately 1.2-fold. On the other hand, PdAgaCgh was sensitive to Fe2+, Ni2+, and Cu2+. The Km and Vmax of PdAgaCgh were 5.15 mg/ml and 2.9 × 103 U/mg, respectively. Interestingly, although the major hydrolytic product was neoagarobiose (NA2), monomeric sugar was also detected by thin-layer chromatographic analysis.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  11. Nawawi NN, Hashim Z, Rahman RA, Murad AMA, Bakar FDA, Illias RM
    Int J Biol Macromol, 2020 May 01;150:80-89.
    PMID: 32035147 DOI: 10.1016/j.ijbiomac.2020.02.032
    Maltooligosaccharides (MOSs) are emerging oligosaccharides in food-based applications and can be synthesized through the enzymatic synthesis of maltogenic amylase from Bacillus lehensis G1 (Mag1). However, the lack of enzyme stability makes this approach unrealistic for industrial applications. The formation of cross-linked enzyme aggregates (CLEAs) is a promising tool for improving enzyme stability, and the substrate accessibility problem of CLEA formation was overcome by the addition of porous agents to generate porous CLEAs (p-CLEAs). However, p-CLEAs exhibited high enzyme leaching and low solvent tolerance. To address these problems, p-CLEAs of Mag1 (Mag1-p-CLEAs) were entrapped in calcium alginate beads (CA). Mag1-p-CLEAs-CA prepared with 2.5% (w/v) sodium alginate and 0.6% (w/v) calcium chloride yielded 53.16% (17.0 U/mg) activity and showed a lower deactivation rate and longer half-life than those of entrapped free Mag1 (Mag1-CA) and entrapped non-porous Mag1-CLEAs (Mag1-CLEAs-CA). Moreover, Mag1-p-CLEAs-CA exhibited low enzyme leaching and high tolerance in various solvents compared to Mag1-p-CLEAs. A kinetic study revealed that Mag1-p-CLEAs-CA exhibited relatively high affinity towards beta-cyclodextrin (β-CD) (Km = 0.62 mM). MOSs (300 mg/g) were synthesized by Mag1-p-CLEAs-CA at 50 °C. Finally, the reusability of Mag1-p-CLEAs-CA makes them as a potential biocatalyst for the continuous synthesis of MOSs.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  12. Mat Yajit NL, Fazlin Hashim NH, Illias RM, Abdul Murad AM
    Protein Expr Purif, 2024 Jul;219:106486.
    PMID: 38642864 DOI: 10.1016/j.pep.2024.106486
    New thermostable β-1,3-1,4-glucanase (lichenase) designated as Blg29 was expressed and purified from a locally isolated alkaliphilic bacteria Bacillus lehensis G1. The genome sequence of B. lehensis predicted an open reading frame of Blg29 with a deduced of 249 amino acids and a molecular weight of 28.99 kDa. The gene encoding for Blg29 was successfully amplified via PCR and subsequently expressed as a recombinant protein using the E. coli expression system. Recombinant Blg29 was produced as a soluble form and further purified via immobilized metal ion affinity chromatography (IMAC). Based on biochemical characterization, recombinant Blg29 showed optimal activity at pH9 and temperature 60 °C respectively. This enzyme was stable for more than 2 h, incubated at 50 °C, and could withstand ∼50 % of its activity at 70 °C for an hour and a half. No significant effect on Blg29 was observed when incubated with metal ions except for a small increase with ion Ca2+. Blg29 showed high substrate activity towards lichenan where Vm, Km, Kcat, and kcat/Km values were 2040.82 μmolmin‾1mg‾1, 4.69 mg/mL, and 986.39 s‾1 and 210.32 mLs‾1mg‾1 respectively. The high thermostability and activity make this enzyme useable for a broad prospect in industry applications.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
  13. Kahar UM, Chan KG, Salleh MM, Hii SM, Goh KM
    Int J Mol Sci, 2013;14(6):11302-18.
    PMID: 23759984 DOI: 10.3390/ijms140611302
    An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK) was purified to homogeneity and characterized. Though amylopullulanases larger than 200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The α-amylase catalytic domain present in all of the amylase superfamily members is present in ApuASK, located between the cyclodextrin (CD)-pullulan-degrading N-terminus and the α-amylase catalytic C-terminus (amyC) domains. In addition, the existence of a S-layer homology (SLH) domain indicates that ApuASK might function as a cell-anchoring enzyme and be important for carbohydrate utilization in a streaming hot spring.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  14. Siew-Wai L, Zi-Ni T, Karim AA, Hani NM, Rosma A
    J Agric Food Chem, 2010 Feb 24;58(4):2274-8.
    PMID: 20121195 DOI: 10.1021/jf903820s
    The in vitro fermentability of sago (Metroxylon sagu) resistant starch type III (RS(3)) by selected probiotic bacteria was investigated. Sago RS(3) with 12% RS content was prepared by enzymatic debranching of native sago starch with pullulanase enzyme, followed by autoclaving, cooling, and annealing. The fermentation of sago RS(3) by L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. casei FTCC 0442, and B. bifidum BB12 was investigated by observing the bacterial growth, carbohydrate consumption profiles, pH changes, and total short chain fatty acids (SCFA) produced in the fermentation media. Comparisons were made with commercial fructo-oligosaccharide (FOS), Hi-maize 1043, and Hi-maize 240. Submerged fermentations were conducted in 30 mL glass vials for 24 h at 37 degrees C in an oven without shaking. The results indicated that fermentation of sago RS(3) significantly (P < 0.05) yielded the highest count of Lactobacillus sp. accompanied by the largest reduction in pH of the medium. Sago RS(3) was significantly the most consumed substrate compared to FOS and Hi-maizes.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
  15. Lee LS, Goh KM, Chan CS, Annie Tan GY, Yin WF, Chong CS, et al.
    Microbiologyopen, 2018 12;7(6):e00615.
    PMID: 29602271 DOI: 10.1002/mbo3.615
    The ability of thermophilic microorganisms and their enzymes to decompose biomass have attracted attention due to their quick reaction time, thermostability, and decreased risk of contamination. Exploitation of efficient thermostable glycoside hydrolases (GHs) could accelerate the industrialization of biofuels and biochemicals. However, the full spectrum of thermophiles and their enzymes that are important for biomass degradation at high temperatures have not yet been thoroughly studied. We examined a Malaysian Y-shaped Sungai Klah hot spring located within a wooded area. The fallen foliage that formed a thick layer of biomass bed under the heated water of the Y-shaped Sungai Klah hot spring was an ideal environment for the discovery and analysis of microbial biomass decay communities. We sequenced the hypervariable regions of bacterial and archaeal 16S rRNA genes using total community DNA extracted from the hot spring. Data suggested that 25 phyla, 58 classes, 110 orders, 171 families, and 328 genera inhabited this hot spring. Among the detected genera, members of Acidimicrobium, Aeropyrum, Caldilinea, Caldisphaera, Chloracidobacterium, Chloroflexus, Desulfurobacterium, Fervidobacterium, Geobacillus, Meiothermus, Melioribacter, Methanothermococcus, Methanotorris, Roseiflexus, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobaculum, and Thermosipho were the main thermophiles containing various GHs that play an important role in cellulose and hemicellulose breakdown. Collectively, the results suggest that the microbial community in this hot spring represents a good source for isolating efficient biomass degrading thermophiles and thermozymes.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
  16. Abdull Razis AF, Noor NM
    Asian Pac J Cancer Prev, 2013;14(7):4235-8.
    PMID: 23991982
    Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 μM) for 24 hours. Glucoraphanin at higher concentration (25 μM) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 μM. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen- metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  17. Rangel Pedersen N, Tovborg M, Soleimani Farjam A, Della Pia EA
    PLoS One, 2021;16(6):e0251556.
    PMID: 34086701 DOI: 10.1371/journal.pone.0251556
    A diverse range of monocot and dicot grains and their by-products are commonly used in the animal feed industry. They all come with complex and variable cell wall structures which in turn contribute significant fiber to the complete feed. The cell wall is a highly interconnected matrix of various polysaccharides, proteins and lignin and, as such, requires a collaborative effort of different enzymes for its degradation. In this regard, we investigated the potential of a commercial multicomponent carbohydrase product from a wild type fermentation of Trichoderma reesei (T. reesei) (RONOZYME® MultiGrain) in degrading cell wall components of wheat, barley, rye, de-oiled rice bran, sunflower, rapeseed and cassava. A total of thirty-one different enzyme proteins were identified in the T. Reesei carbohydrase product using liquid chromatography with tandem mass spectrometry LC-MS/MS including glycosyl hydrolases and carbohydrate esterases. As measured by in vitro incubations and non-starch polysaccharide component analysis, and visualization by immunocytochemistry and confocal microscopy imaging of immuno-labeled samples with confocal microscopy, the carbohydrase product effectively solubilized cellulolytic and hemicellulolytic polysaccharides present in the cell walls of all the feed ingredients evaluated. The T. reesei fermentation also decreased viscosity of arabinoxylan, xyloglucan, galactomannan and β-glucan substrates. Combination of several debranching enzymes including arabinofuranosidase, xylosidase, α-galactosidase, acetyl xylan esterase, and 4-O-methyl-glucuronoyl methylesterase with both GH10 and GH11 xylanases in the carbohydrase product resulted in effective hydrolyzation of heavily branched glucuronoarabinoxylans. The different β-glucanases (both endo-β-1,3(4)-glucanase and endo-β-1,3-glucanase), cellulases and a β-glucosidase in the T. reesei fermentation effectively reduced polymerization of both β-glucans and cellulose polysaccharides of viscous cereals grains (wheat, barley, rye and oat). Interestingly, the secretome of T. reesei contained significant amounts of an exceptional direct chain-cutting enzyme from the GH74 family (Cel74A, xyloglucan-specific β-1,4-endoglucanase), that strictly cleaves the xyloglucan backbone at the substituted regions. Here, we demonstrated that the balance of enzymes present in the T. reesei secretome is capable of degrading various cell wall components in both monocot and dicot plant raw material used as animal feed.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  18. Abdul Manas NH, Pachelles S, Mahadi NM, Illias RM
    PLoS One, 2014;9(9):e106481.
    PMID: 25221964 DOI: 10.1371/journal.pone.0106481
    A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
  19. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  20. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Noor NM, et al.
    Biomed Pharmacother, 2019 Nov;119:109445.
    PMID: 31541852 DOI: 10.1016/j.biopha.2019.109445
    The antioxidant and neuroprotective activity of Glucomoringin isothiocyanate (GMG-ITC) have been reported in in vivo and in vitro models of neurodegenerative diseases. However, its neuroprotective role via mitochondrial-dependent pathway in a noxious environment remains unknown. The main objective of the present study was to unveil the mitochondrial apoptotic genes' profile and prospectively link with neuroprotective activity of GMG-ITC through its ROS scavenging. The results showed that pre-treatment of differentiated SH-SY5Y cells with 1.25 μg/mL purified isolated GMG-ITC, significantly reduced reactive oxygen species (ROS) production level, compared to H2O2 control group, as evidenced by flow cytometry-based evaluation of ROS generation. Presence of GMG-ITC prior to development of oxidative stress condition, downregulated the expression of cyt-c, p53, Apaf-1, Bax, CASP3, CASP8 and CASP9 genes with concurrent upregulation of Bcl-2 gene in mitochondrial apoptotic signalling pathway. Protein Multiplex revealed significant decreased in cyt-c, p53, Apaf-1, Bax, CASP8 and CASP9 due to GMG-ITC pre-treatment in oxidative stress condition. The present findings speculated that pre-treatment with GMG-ITC may alleviate oxidative stress condition in neuronal cells by reducing ROS production level and protect the cells against apoptosis via neurodegenerative disease potential pathways.
    Matched MeSH terms: Glycoside Hydrolases/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links