Displaying publications 1 - 20 of 176 in total

Abstract:
Sort:
  1. Yaakop AS, Chan CS, Kahar UM, Ee R, Chan KG, Goh KM
    Genome Announc, 2015;3(3).
    PMID: 25977433 DOI: 10.1128/genomeA.00457-15
    Erythrobacter vulgaris strain O1, a moderate halophile, was isolated from a beach in Johor, Malaysia. Here, we present the draft genome and suggest potential applications of this bacterium.
    Matched MeSH terms: Genome, Bacterial
  2. Teo WF, Wee WY, Choo SW, Tan GY
    Mar Genomics, 2015 Apr;20:11-2.
    PMID: 25554669 DOI: 10.1016/j.margen.2014.12.006
    The bacterium strain SE31, a member of the genus Sciscionella, was isolated from intertidal sediments collected from Cape Rachado, Malaysia. The high quality draft genome sequence of Sciscionella strain SE31 with a genome size of approximately 7.4 Mbp is reported. Preliminary analysis revealed 46 putative gene clusters involved in the biosynthesis of secondary metabolites and 113 putative genes that are associated with bacterial virulence, disease and defense. Availability of the genome sequence of Sciscionella SE31 will contribute to a better understanding of the genus Sciscionella.
    Matched MeSH terms: Genome, Bacterial*
  3. Sam-On MFS, Mustafa S, Mohd Hashim A, Yusof MT, Zulkifly S, Malek AZA, et al.
    Microb Pathog, 2023 Aug;181:106161.
    PMID: 37207784 DOI: 10.1016/j.micpath.2023.106161
    Bacillus velezensis FS26 is a bacterium from the genus Bacillus that has been proven as a potential probiotic in aquaculture with a good antagonistic effect on Aeromonas spp. and Vibrio spp. Whole-genome sequencing (WGS) allows a comprehensive and in-depth analysis at the molecular level, and it is becoming an increasingly significant technique in aquaculture research. Although numerous probiotic genomes have been sequenced and investigated recently, there are minimal data on in silico analysis of B. velezensis as a probiotic bacterium isolated from aquaculture sources. Thus, this study aims to analyse the general genome characteristics and probiotic markers from the B. velezensis FS26 genome with secondary metabolites predicted against aquaculture pathogens. The B. velezensis FS26 genome (GenBank Accession: JAOPEO000000000) assembly proved to be of high quality, with eight contigs containing 3,926,371 bp and an average G + C content of 46.5%. According to antiSMASH analysis, five clusters of secondary metabolites from the B. velezensis FS26 genome showed 100% similarity. These clusters include Cluster 2 (bacilysin), Cluster 6 (bacillibactin), Cluster 7 (fengycin), Cluster 8 (bacillaene), and Cluster 9 (macrolactin H), which signify promising antibacterial, antifungal, and anticyanobacterial agents against pathogens in aquaculture. The probiotic markers of B. velezensis FS26 genome for adhesion capability in the hosts' intestine, as well as the acid and bile salt-tolerant genes, were also detected through the Prokaryotic Genome Annotation System (Prokka) annotation pipeline. These results are in agreement with our previous in vitro data, suggesting that the in silico investigation facilitates establishing B. velezensis FS26 as a beneficial probiotic for use in aquaculture.
    Matched MeSH terms: Genome, Bacterial
  4. Choo SW, Ang MY, Fouladi H, Tan SY, Siow CC, Mutha NV, et al.
    BMC Genomics, 2014;15:600.
    PMID: 25030426 DOI: 10.1186/1471-2164-15-600
    Helicobacter is a genus of Gram-negative bacteria, possessing a characteristic helical shape that has been associated with a wide spectrum of human diseases. Although much research has been done on Helicobacter and many genomes have been sequenced, currently there is no specialized Helicobacter genomic resource and analysis platform to facilitate analysis of these genomes. With the increasing number of Helicobacter genomes being sequenced, comparative genomic analysis on members of this species will provide further insights on their taxonomy, phylogeny, pathogenicity and other information that may contribute to better management of diseases caused by Helicobacter pathogens.
    Matched MeSH terms: Genome, Bacterial*
  5. Ahmed N, Loke MF, Kumar N, Vadivelu J
    Helicobacter, 2013 Sep;18 Suppl 1:1-4.
    PMID: 24011237 DOI: 10.1111/hel.12069
    We describe features of key additions to the existing pool of publicly accessible Helicobacter pylori genome sequences and sequences of Helicobacter pylori phages from April 2012 to March 2013. In addition, important studies involving H. pylori genomes, especially those pertaining to genomic diversity, disease outcome, H. pylori population structure and evolution are reviewed. High degree of homologous recombination contributes to increased diversity of H. pylori genomes. New methods of resolving H. pylori population structure to an ultrafine level led to the proposal of new subpopulations. As the magnitude of diversity in the H. pylori gene pool becomes more and more clear, geographic and demographic factors should be brought to analysis while identifying disease-specific biomarkers and defining new virulence mechanisms.
    Matched MeSH terms: Genome, Bacterial*
  6. Wee WY, Tan TK, Jakubovics NS, Choo SW
    PLoS One, 2016;11(3):e0152682.
    PMID: 27031249 DOI: 10.1371/journal.pone.0152682
    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
    Matched MeSH terms: Genome, Bacterial*
  7. Zheng W, Tan TK, Paterson IC, Mutha NV, Siow CC, Tan SY, et al.
    PLoS One, 2016;11(5):e0151908.
    PMID: 27138013 DOI: 10.1371/journal.pone.0151908
    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.
    Matched MeSH terms: Genome, Bacterial*
  8. Yaakop AS, Chan KG, Gan HM, Goh KM
    Mar Genomics, 2015 Oct;23:59-60.
    PMID: 25999308 DOI: 10.1016/j.margen.2015.05.004
    Jeotgalibacillus campisalis SF-57(T) (=KCCM 41644(T), JCM 11810(T)) is a moderate halophilic bacterium isolated from a Korean marine saltern. In this study, we describe the high-quality draft genome of strain SF-57(T), which was assembled into 24 contigs containing 3,650,490bp with a G+C content of 41.06%. Availability of the genome sequence of J. campisalis SF-57(T) will contribute to a better understanding of the genus Jeotgalibacillus.
    Matched MeSH terms: Genome, Bacterial*
  9. Ten KE, Md Zoqratt MZH, Ayub Q, Tan HS
    BMC Res Notes, 2021 Mar 04;14(1):83.
    PMID: 33663564 DOI: 10.1186/s13104-021-05493-z
    OBJECTIVE: The nosocomial pathogen, Acinetobacter baumannii, has acquired clinical significance due to its ability to persist in hospital settings and survive antibiotic treatment, which eventually resulted in the rapid spread of this bacterium with antimicrobial resistance (AMR) phenotypes. This study used a multidrug-resistant A. baumannii (strain ATCC BAA1605) as a model to study the genomic features of this pathogen.

    RESULTS: One circular chromosome and one circular plasmid were discovered in the complete genome of A. baumannii ATCC BAA1605 using whole-genome sequencing. The chromosome is 4,039,171 bp long with a GC content of 39.24%. Many AMR genes, which confer resistance to major classes of antibiotics (beta-lactams, aminoglycosides, tetracycline, sulphonamides), were found on the chromosome. Two genomic islands were predicted on the chromosome, one of which (Genomic Island 1) contains a cluster of AMR genes and mobile elements, suggesting the possibility of horizontal gene transfer. A subtype I-F CRISPR-Cas system was also identified on the chromosome of A. baumannii ATCC BAA1605. This study provides valuable genome data that can be used as a reference for future studies on A. baumannii. The genome of A. baumannii ATCC BAA1605 has been deposited at GenBank under accession no. CP058625 and CP058626.

    Matched MeSH terms: Genome, Bacterial/genetics
  10. Ang MY, Dutta A, Wee WY, Dymock D, Paterson IC, Choo SW
    Genome Biol Evol, 2016 10 05;8(9):2928-2938.
    PMID: 27540086
    Fusobacterium nucleatum is considered to be a key oral bacterium in recruiting periodontal pathogens into subgingival dental plaque. Currently F. nucleatum can be subdivided into five subspecies. Our previous genome analysis of F. nucleatum W1481 (referred to hereafter as W1481), isolated from an 8-mm periodontal pocket in a patient with chronic periodontitis, suggested the possibility of a new subspecies. To further investigate the biology and relationships of this possible subspecies with other known subspecies, we performed comparative analysis between W1481 and 35 genome sequences represented by the five known Fusobacterium subspecies. Our analyses suggest that W1481 is most likely a new F. nucleatum subspecies, supported by evidence from phylogenetic analyses and maximal unique match indices (MUMi). Interestingly, we found a horizontally transferred W1481-specific genomic island harboring the tripartite ATP-independent (TRAP)-like transporter genes, suggesting this bacterium might have a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. Moreover, we found virulence genes in the W1481 genome that may provide a strong defense mechanism which might enable it to colonize and survive within the host by evading immune surveillance. This comparative study provides better understanding of F. nucleatum and the basis for future functional work on this important pathogen.
    Matched MeSH terms: Genome, Bacterial*
  11. Yu CY, Ang GY, Chong TM, Chin PS, Ngeow YF, Yin WF, et al.
    J Antimicrob Chemother, 2017 04 01;72(4):1253-1255.
    PMID: 28031273 DOI: 10.1093/jac/dkw541
    Matched MeSH terms: Genome, Bacterial/genetics*
  12. Wan JH, Ng LM, Neoh SZ, Kajitani R, Itoh T, Kajiwara S, et al.
    Arch Microbiol, 2023 Jan 16;205(2):66.
    PMID: 36645481 DOI: 10.1007/s00203-023-03406-1
    Polyhydroxyalkanoate (PHA) is a type of biopolymer produced by most bacteria and archaea, resembling thermoplastic with biodegradability and biocompatibility features. Here, we report the complete genome of a PHA producer, Aquitalea sp. USM4, isolated from Perak, Malaysia. This bacterium possessed a 4.2 Mb circular chromosome and a 54,370 bp plasmid. A total of 4067 predicted protein-coding sequences, 87 tRNA genes, and 25 rRNA operons were identified using PGAP. Based on ANI and dDDH analysis, the Aquitalea sp. USM4 is highly similar to Aquitalea pelogenes. We also identified genes, including acetyl-CoA (phaA), acetoacetyl-CoA (phaB), PHA synthase (phaC), enoyl-CoA hydratase (phaJ), and phasin (phaP), which play an important role in PHA production in Aquitalea sp. USM4. The heterologous expression of phaC1 from Aquitalea sp. USM4 in Cupriavidus necator PHB-4 was able to incorporate six different types of PHA monomers, which are 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), 3-hydroxyhexanoate (3HHx) and isocaproic acid (3H4MV) with suitable precursor substrates. This is the first complete genome sequence of the genus Aquitalea among the 22 genome sequences from 4 Aquitalea species listed in the GOLD database, which provides an insight into its genome evolution and molecular machinery responsible for PHA biosynthesis.
    Matched MeSH terms: Genome, Bacterial*
  13. Hong KW, Koh CL, Sam CK, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6317.
    PMID: 23105060 DOI: 10.1128/JB.01578-12
    Burkholderia sp. strain GG4, isolated from the ginger rhizosphere, possesses a unique N-acylhomoserine lactone (AHL)-modifying activity that reduces 3-oxo-AHLs to 3-hydroxy-AHLs. To the best of our knowledge, this is the first sequenced genome from a bacterium of the genus Burkholderia that shows both quorum-sensing and signaling confusion activities.
    Matched MeSH terms: Genome, Bacterial*
  14. Choo SW, Wong YL, Beh CY, Lokanathan N, Leong ML, Ong CS, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23405341 DOI: 10.1128/genomeA.00063-12
    Mycobacterium abscessus is an emerging clinical pathogen commonly associated with non-tuberculous mycobacterial infections. We report herein the draft genome of M. abscessus strain M156.
    Matched MeSH terms: Genome, Bacterial
  15. Chan XY, Chen JW, Adrian TG, Hong KW, Chang CY, Yin WF, et al.
    Genome Announc, 2017 Mar 30;5(13).
    PMID: 28360153 DOI: 10.1128/genomeA.00067-17
    Bacillus sp. is a Gram-positive bacterium that is commonly found in seawater. In this study, the genome of marine Bacillus sp. strain G3(2015) was sequenced using MiSeq. The fosfomycin resistant gene fosB was identified upon bacterial genome annotation.
    Matched MeSH terms: Genome, Bacterial
  16. Gopalakrishnan S, Ebenesersdóttir SS, Lundstrøm IKC, Turner-Walker G, Moore KHS, Luisi P, et al.
    Curr Biol, 2022 Nov 07;32(21):4743-4751.e6.
    PMID: 36182700 DOI: 10.1016/j.cub.2022.09.023
    Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
    Matched MeSH terms: Genome, Bacterial
  17. Mienda BS
    J Biomol Struct Dyn, 2017 Jul;35(9):1863-1873.
    PMID: 27251747 DOI: 10.1080/07391102.2016.1197153
    Genome-scale metabolic models (GEMs) have been developed and used in guiding systems' metabolic engineering strategies for strain design and development. This strategy has been used in fermentative production of bio-based industrial chemicals and fuels from alternative carbon sources. However, computer-aided hypotheses building using established algorithms and software platforms for biological discovery can be integrated into the pipeline for strain design strategy to create superior strains of microorganisms for targeted biosynthetic goals. Here, I described an integrated workflow strategy using GEMs for strain design and biological discovery. Specific case studies of strain design and biological discovery using Escherichia coli genome-scale model are presented and discussed. The integrated workflow presented herein, when applied carefully would help guide future design strategies for high-performance microbial strains that have existing and forthcoming genome-scale metabolic models.
    Matched MeSH terms: Genome, Bacterial/genetics*
  18. Sekizuka T, Kai M, Nakanaga K, Nakata N, Kazumi Y, Maeda S, et al.
    PLoS One, 2014;9(12):e114848.
    PMID: 25503461 DOI: 10.1371/journal.pone.0114848
    Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898). Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional ß-oxidation-related genes and, notably, the mammalian cell entry (mce) operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1), in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32%) and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%), as well as isolates of other countries (Malaysia, France, United Kingdom and United States). The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC), suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC.
    Matched MeSH terms: Genome, Bacterial*
  19. Choo SW, Heydari H, Tan TK, Siow CC, Beh CY, Wee WY, et al.
    ScientificWorldJournal, 2014;2014:569324.
    PMID: 25243218 DOI: 10.1155/2014/569324
    To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC) tool, and pathogenomics profiling tool (PathoProT). The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.
    Matched MeSH terms: Genome, Bacterial/genetics*
  20. Ang MY, Heydari H, Jakubovics NS, Mahmud MI, Dutta A, Wee WY, et al.
    Database (Oxford), 2014;2014.
    PMID: 25149689 DOI: 10.1093/database/bau082
    Fusobacterium are anaerobic gram-negative bacteria that have been associated with a wide spectrum of human infections and diseases. As the biology of Fusobacterium is still not well understood, comparative genomic analysis on members of this species will provide further insights on their taxonomy, phylogeny, pathogenicity and other information that may contribute to better management of infections and diseases. To facilitate the ongoing genomic research on Fusobacterium, a specialized database with easy-to-use analysis tools is necessary. Here we present FusoBase, an online database providing access to genome-wide annotated sequences of Fusobacterium strains as well as bioinformatics tools, to support the expanding scientific community. Using our custom-developed Pairwise Genome Comparison tool, we demonstrate how differences between two user-defined genomes and how insertion of putative prophages can be identified. In addition, Pathogenomics Profiling Tool is capable of clustering predicted genes across Fusobacterium strains and visualizing the results in the form of a heat map with dendrogram.
    Matched MeSH terms: Genome, Bacterial*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links