MATERIALS AND METHODS: Patients with at least one EEG recording were recruited. The EEG and clinical data were collated.
RESULTS: Two hundred and fifty patients underwent EEG and 154 (61.6%) were found to have abnormal EEG. The abnormal changes consist of theta activity (79,31.6%), delta activity (20, 8%), focal discharges (41,16.4%) and generalised discharges (14, 5.6%). Older patients had 3.481 higher risk for EEG abnormalities, p=0.001. Patients who had focal seizures had 2.240 higher risk of having EEG abnormalities, p<0.001. Low protein level was a risk for EEG abnormalities, p=0.003.
CONCLUSION: This study emphasised that an abnormal EEG remains a useful tool in determining the likelihood for seizures in a hospital setting. The risk factors for EEG abnormality in hospitalised patients were age, focal seizures and low protein level. The EEG may have an important role as part of the workup in hospitalised patients to aid the clinician to tailor their management in a holistic manner.
OBJECTIVE: In this research, for the first time, we investigate how facial muscle reaction is related to the reaction of the human brain.
METHODS: Since both electromyography (EMG) and electroencephalography (EEG) signals, as the features of muscle and brain activities, contain information, we benefited from the information theory and computed the Shannon entropy of EMG and EEG signals when subjects were exposed to different static visual stimuli with different Shannon entropies (information content).
RESULTS: Based on the obtained results, the variations of the information content of the EMG signal are related to the variations of the information content of the EEG signal and the visual stimuli. Statistical analysis also supported the results indicating that the visual stimuli with greater information content have a greater effect on the variation of the information content of both EEG and EMG signals.
CONCLUSION: This investigation can be further continued to analyze the relationship between facial muscle and brain reactions in case of other types of stimuli.
OBJECTIVE: This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view.
METHODS: We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents.
RESULTS: According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.
METHODS: A literature search was carried out in PubMed and Google Scholar using suitable search terms and reference lists of articles found were searched for further articles.
RESULTS: By the end of February 2023, 82 patients with SARS-CoV-2 associated PRES were recorded. The latency between the onset of COVID-19 and the onset of PRES ranged from 1 day to 70 days. The most common presentations of PRES were mental deterioration (n=47), seizures (n=46) and visual disturbances (n=18). Elevated blood pressure was reported on admission or during hospitalisation in 48 patients. The most common comorbidities were arterial hypertension, diabetes, hyperlipidemia and atherosclerosis. PRES was best diagnosed by multimodal cerebral magnetic resonance imaging (MRI). Complete recovery was reported in 35 patients and partial recovery in 21 patients, while seven patients died.
CONCLUSIONS: PRES can be a CNS complication associated with COVID-19. COVID-19 patients with mental dysfunction, seizures or visual disturbances should immediately undergo CNS imaging through multimodal MRI, electroencephalography (EEG) and cerebrospinal fluid (CSF) studies in order not to miss PRES.
METHODS: The proposed technique decomposes ictal EEG recursively, eliminates a few unwanted components in every recursive cycle, and finally selects the most significant ictal component. Back-projected EEG, regenerated from that component, was used for source estimation. Fifty sets of simulated EEGs and 24 seizures in 8 patients were analyzed. Dipole sources of simulated-EEGs were compared with a known dipole location whereas epileptogenic zones of the seizures were compared with their corresponding sites of successful surgery. The RIDICS technique was compared with a conventional technique.
RESULTS: The RIDICS technique estimated the dipole sources at an average distance of 12.86 mm from the original dipole location, shorter than the distances obtained using the conventional technique. Epileptogenic zones of the patients, determined by the RIDICS technique, were highly concordant with the sites of surgery with a concordance rate of 83.33%.
CONCLUSIONS: Results show that the RIDICS technique can be a promising quantitative technique for ictal component selection.
SIGNIFICANCE: Properly selected ictal component gives good approximation of epileptogenic zone, which eventually leads to successful epilepsy surgery.
METHODS: Following title/abstract screening by two independent reviewers, 27 articles were selected for critical analysis in this review.
RESULTS: These articles revealed ambulatory, non-invasive and wearable medical devices, such as the in-ear EEG devices; the accelerometer-based devices and the subcutaneous implanted EEG devices might be more acceptable than traditional EEG systems. In addition, extracerebral signalbased devices may be more efficient than EEG-based systems, especially when combined with an intervention trigger. Although further studies may still be required to improve and validate these proposed systems before commercialization, these findings may give hope to epileptic patients, particularly those with refractory epilepsy, to predict and manage their seizures.
CONCLUSION: The use of medical devices for epilepsy may improve patients' independence and quality of life and possibly prevent sudden unexpected death in epilepsy (SUDEP).
METHOD: The paper explores a combination of variational mode decomposition (VMD), and Hilbert transform (HT) called VMD-HT to extract hidden information from EEG signals. Forty-one statistical parameters extracted from the absolute value of analytical mode functions (AMF) have been classified using the explainable boosted machine (EBM) model. The interpretability of the model is tested using statistical analysis and performance measurement. The importance of the features, channels and brain regions has been identified using the glass-box and black-box approach. The model's local and global explainability has been visualized using Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence Plot (PDP), and Morris sensitivity. To the best of our knowledge, this is the first work that explores the explainability of the model prediction in ADHD detection, particularly for children.
RESULTS: Our results show that the explainable model has provided an accuracy of 99.81%, a sensitivity of 99.78%, 99.84% specificity, an F-1 measure of 99.83%, the precision of 99.87%, a false detection rate of 0.13%, and Mathew's correlation coefficient, negative predicted value, and critical success index of 99.61%, 99.73%, and 99.66%, respectively in detecting the ADHD automatically with ten-fold cross-validation. The model has provided an area under the curve of 100% while the detection rate of 99.87% and 99.73% has been obtained for ADHD and HC, respectively.
CONCLUSIONS: The model show that the interpretability and explainability of frontal region is highest compared to pre-frontal, central, parietal, occipital, and temporal regions. Our findings has provided important insight into the developed model which is highly reliable, robust, interpretable, and explainable for the clinicians to detect ADHD in children. Early and rapid ADHD diagnosis using robust explainable technologies may reduce the cost of treatment and lessen the number of patients undergoing lengthy diagnosis procedures.