Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Md Yusuf N, Azman AN, Abdul Aziz AA, Ahmad Fuad FA, Nasarudin RN, Hisam S
    PLoS One, 2024;19(8):e0306975.
    PMID: 39146276 DOI: 10.1371/journal.pone.0306975
    Malaria, an ancient mosquito-borne illness caused by Plasmodium parasites, is mostly treated with Artemisinin Combination Therapy (ACT). However, Single Nucleotide Polymorphisms (SNPs) mutations in the P. falciparum Kelch 13 (PfK13) protein have been associated with artemisinin resistance (ART-R). Therefore, this study aims to generate PfK13 recombinant proteins incorporating of two specific SNPs mutations, PfK13-V494I and PfK13-N537I, and subsequently analyze their binding interactions with artemisinin (ART). The recombinant proteins of PfK13 mutations and the Wild Type (WT) variant were expressed utilizing a standard protein expression protocol with modifications and subsequently purified via IMAC and confirmed with SDS-PAGE analysis and Orbitrap tandem mass spectrometry. The binding interactions between PfK13-V494I and PfK13-N537I propeller domain proteins ART were assessed through Isothermal Titration Calorimetry (ITC) and subsequently validated using fluorescence spectrometry. The protein concentrations obtained were 0.3 mg/ml for PfK13-WT, 0.18 mg/ml for PfK13-V494I, and 0.28 mg/ml for PfK13-N537I. Results obtained for binding interaction revealed an increased fluorescence intensity in the mutants PfK13-N537I (83 a.u.) and PfK13-V494I (143 a.u.) compared to PfK13-WT (33 a.u.), indicating increased exposure of surface proteins because of the looser binding between PfK13 protein mutants with ART. This shows that the PfK13 mutations may induce alterations in the binding interaction with ART, potentially leading to reduced effectiveness of ART and ultimately contributing to ART-R. However, this study only elucidated one facet of the contributing factors that could serve as potential indicators for ART-R and further investigation should be pursued in the future to comprehensively explore this complex mechanism of ART-R.
    Matched MeSH terms: Drug Resistance/genetics
  2. Suphakhonchuwong N, Rungsihirunrat K, Kuesap J
    Parasitol Res, 2023 Dec;122(12):2871-2883.
    PMID: 37725258 DOI: 10.1007/s00436-023-07977-2
    Resistance to antimalarial drugs is a serious issue around the world. Widespread Plasmodium vivax and P. falciparum coinfections are commonly found in Thailand. Dihydroartemisinin and piperaquine (DHA-PPQ) have been used as first-line treatments for P. falciparum since 2015, and chloroquine (CQ) and primaquine (PQ) have remained first-line drugs for P. vivax for more than 60 years. Coinfections may lead parasites to evolve with regard to genetics under selective drug pressure. This study is aimed at investigating genes linked to antimalarial resistance in P. vivax before and after introduction of DHA-PPQ as a new drug regimen in Thailand. A total of 400 P. vivax isolates were collected from samples along the Thai-Myanmar and Thai-Malaysian borders before (2009-2015) and after (2016-2019) introduction of DHA-PPQ. Genomic DNA of P. vivax was obtained and subjected to analysis of five drug resistance-associated genes (Pvdhfr, Pvdhps, Pvmdr1, Pvcrt-o, and PvK12) by nested polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), and nucleotide sequencing. A high prevalence of Pvdhfr was found in both endemic areas over the period. The quadruple (57I/58R/61M/117T) Pvdhfr haplotype was predominant in both periods in both endemic areas. Although the wild-type haplotype of Pvdhps was predominant in Thai-Malaysian isolates in both periods, a single mutant haplotype (383G) was dominant in Thai-Myanmar isolates during both periods. A low prevalence of the Pvmdr1 976F mutation was found in both periods among Thai-Myanmar isolates. A significant decrease in Pvmdr1 976F was identified in Thai-Malaysian isolates from the second period (p < 0.01). Only one nonsynonymous mutation of Pvcrt-o (193E) and one synonymous mutation of PvK12 (R584) were detected in four isolates (4.7%) and one isolate (0.5%) in the first period among Thai-Myanmar isolates, respectively. Thus, with limited clinical efficacy data, the low prevalence of drug-resistance markers may suggest that there is a low prevalence of P. vivax-resistant strains and that the current drug regimen for P. vivax is still effective for treating this P. vivax parasite population. Continued surveillance of antimalarial drug resistance markers and monitoring of clinical drug efficacy should be conducted for epidemiological and policy implications.
    Matched MeSH terms: Drug Resistance/genetics
  3. Al-Mekhlafi HM, Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, et al.
    Sci Rep, 2022 01 11;12(1):517.
    PMID: 35017593 DOI: 10.1038/s41598-021-04450-x
    A total of 227 Plasmodium falciparum isolates from Jazan region, southwestern Saudi Arabia were amplified for the P. falciparum multi-drug resistance 1 (pfmdr1) gene to detect point mutations 11 years after the introduction of artemisinin-based combination therapy (ACT) in Saudi Arabia. The pfmdr1 86Y mutation was found in 11.5% (26/227) of the isolates while the N86 wild allele was detected in 88.5%. Moreover, 184F point mutations dominated (86.3%) the instances of pfmdr1 polymorphism while no mutation was observed at codons 1034, 1042 and 1246. Three pfmdr1 haplotypes were identified, NFSND (74.9%), NYSND (13.7%) and YFSND (11.4%). Associations of the prevalence of 86Y mutation and YFSND haplotype with participants' nationality, residency and parasitaemia level were found to be significant (P drug resistance in Jazan region is highly recommended.
    Matched MeSH terms: Drug Resistance/genetics
  4. Tan LL, Lau TY, Timothy W, Prabakaran D
    ScientificWorldJournal, 2014;2014:935846.
    PMID: 25574497 DOI: 10.1155/2014/935846
    Chloroquine resistance (CQR) in falciparum malaria was identified to be associated with several mutations in the chloroquine resistance transporter gene (pfcrt) that encodes the transmembrane transporter in digestive vacuole membrane of the parasite. This study aimed to investigate the point mutations across the full-length pfcrt in Plasmodium falciparum isolates in Sabah, Malaysia. A total of 31 P. falciparum positive samples collected from Keningau, Kota Kinabalu, and Kudat, Sabah, were analyzed. pfcrt was PCR amplified and cloned prior to sequence analysis. This study showed that all the previously described 10 point mutations associated with CQR at codons 72, 74, 75, 76, 97, 220, 271, 326, 356, and 371 were found with different prevalence. Besides, two novel point mutations, I166V and H273N, were identified with 22.5% and 19.3%, respectively. Three haplotypes, namely, CVMNK (29%), CVIET (3.2%), and SVMNT (67.7%), were identified. High prevalence of SVMNT among P. falciparum isolates from Sabah showed that these isolates are closer to the P. falciparum isolates from Papua New Guinea rather than to the more proximal Southeast Asian CVIET haplotype. Full-length analysis of pfcrt showed that chloroquine resistant P. falciparum in Sabah is still prevalent despite the withdrawal of chloroquine usage since 1979.
    Matched MeSH terms: Drug Resistance/genetics*
  5. Haerian BS, Roslan H, Raymond AA, Tan CT, Lim KS, Zulkifli SZ, et al.
    Seizure, 2010 Jul;19(6):339-46.
    PMID: 20605481 DOI: 10.1016/j.seizure.2010.05.004
    The C3435T, a major allelic variant of the ABCB1 gene, is proposed to play a crucial role in drug-resistance in epilepsy. The C/C genotype carriers reportedly are at higher risk of pharmacoresistance to AEDs, but only in some studies. The hypothesis of the C-variant associated risk and resistance to antiepileptic drugs (AEDs) has been hampered by conflicting results from inadequate power in case-control studies. To assess the role of C3435T polymorphism in drug-resistance in epilepsy, a systematic review and meta-analysis was conducted.
    Matched MeSH terms: Drug Resistance/genetics*
  6. Chen JE, Barbrook AC, Cui G, Howe CJ, Aranda M
    PLoS One, 2019;14(2):e0211936.
    PMID: 30779749 DOI: 10.1371/journal.pone.0211936
    Modern transformation and genome editing techniques have shown great success across a broad variety of organisms. However, no study of successfully applied genome editing has been reported in a dinoflagellate despite the first genetic transformation of Symbiodinium being published about 20 years ago. Using an array of different available transformation techniques, we attempted to transform Symbiodinium microadriaticum (CCMP2467), a dinoflagellate symbiont of reef-building corals, with the view to performing subsequent CRISPR-Cas9 mediated genome editing. Plasmid vectors designed for nuclear transformation containing the chloramphenicol resistance gene under the control of the CaMV p35S promoter as well as several putative endogenous promoters were used to test a variety of transformation techniques including biolistics, electroporation and agitation with silicon carbide whiskers. Chloroplast-targeted transformation was attempted using an engineered Symbiodinium chloroplast minicircle encoding a modified PsbA protein expected to confer atrazine resistance. We report that we have been unable to confer chloramphenicol or atrazine resistance on Symbiodinium microadriaticum strain CCMP2467.
    Matched MeSH terms: Drug Resistance/genetics
  7. Zaw MT, Lin Z, Emran NA
    J Microbiol Immunol Infect, 2020 Oct;53(5):676-681.
    PMID: 31563454 DOI: 10.1016/j.jmii.2019.07.006
    The mortality caused by Plasmodium falciparum was reduced by Artemisinin (ART) and ART combination therapy (ACT). However, Artemisinin resistance (ART-R) emerge during 2008 in Cambodia and spread to Greater Mekong Subregion (GMS). ART-R was confirmed not to spread to India, a gateway to whole Africa. The whole genome sequencing approach of P. falciparum assumed the k13 gene encoded Kelch protein was discovered to be associated with ART-R. Of the single nucleotide polymorphisms (SNPs) of k13 gene, C580Y mutant was commonly dominant in Cambodia, Myanmar, Thailand, Laos and Vietnam and assumed to be one of strong molecular markers for ART-R in P. falciparum isolates in GMS. Literatures published between 2017 and 2018 were reviewed in this work. F446I is observed to be doubtful molecular marker as ART-R marker. Transgenic experiment showed that parasite with F446I mutation displayed prolonged clearance in respond to ART while C580Y was applied as positive control mutant. Furthermore, study of C580Y allele in four countries Cambodia, Thailand, Laos resulted in single origin whereas the parasite with this allele showed multi-origin in three Provinces of Vietnam. As artemisinin was short acting drug, the role of long acting partner drug was studied by using transgenic C580Y mutant and C580 to leave recrudescent P. falciparum. Recently, there was treatment failure with ACT in some countries in GMS. In this review, the importance of C580Y mutation in the study of ART-R was discussed.
    Matched MeSH terms: Drug Resistance/genetics*
  8. He WH, Feng XX, Wu X, Zhai XH, Li YY, Zhang B, et al.
    Trop Biomed, 2020 Dec 01;37(4):871-876.
    PMID: 33612740 DOI: 10.47665/tb.37.4.871
    To evaluate the inhibitory effects of drugs on the growth of Babesia gibsoni, relative quantification real-time PCR method was developed in this study. The 18S rRNA gene was used as a target gene for the 2-ΔΔCt method analysis. Additionally, chicken RNA was added to the parasitized blood before total RNA extraction. The chicken β-actin gene was selected as an internal control gene for the 2-ΔΔCt method analysis. The 100 µL parasitized blood samples with different percentages of parasitized erythrocytes (PPEs) (3%, 1.5%, 0.75%, 0.375% and 0.1875%) were prepared for relative quantification of B. gibsoni. Regression analysis results revealed significant linear relationships between the relative quantification value and parasitemia. 18S rRNA gene expression was significantly decreased after treatment with diminazene aceturate and artesunate in vitro drug sensitivity test. This result suggested that this relative quantification real-time PCR method can be used to evaluate the effects of drug inhibition.
    Matched MeSH terms: Drug Resistance/genetics
  9. Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, et al.
    Parasitol Res, 2021 Nov;120(11):3771-3781.
    PMID: 34561749 DOI: 10.1007/s00436-021-07323-4
    This study investigated the polymorphism in the P. falciparum chloroquine resistance transporter (pfcrt) gene 11 years after chloroquine (CQ) cessation in Jazan region, southwestern Saudi Arabia. Two hundred and thirty-five P. falciparum isolates were amplified to detect mutations in the pfcrt gene. The pfcrt 76 T molecular marker for CQ resistance was detected in 66.4% (156/235) of the isolates, while the K76 CQ-sensitive wild type was detected in 33.6%. The pfcrt 74I and pfcrt 75E point mutations were each found to be present in 56.2% of isolates, while only four isolates (1.7%) were found to carry the pfcrt 72S mutation. Moreover, four pfcrt haplotypes were identified as follows: the CVIET triple-allele (56.2%), SVMET double-allele (1.7%) and CVMNT single-allele (8.5%) mutant haplotypes and the CVMNK wild haplotype (33.6%). The analysis also revealed significant associations between the prevalence of mutant pfcrt alleles and haplotypes and the age group, governorate and nationality of the patients as well as the parasitaemia level (p 
    Matched MeSH terms: Drug Resistance/genetics
  10. Das S, Tripathy S, Das A, Sharma MK, Nag A, Hati AK, et al.
    PMID: 36583107 DOI: 10.3389/fcimb.2022.865814
    INTRODUCTION: After being used vigorously for the previous two decades to treat P. falciparum, chloroquine and sulfadoxine-pyrimethamine were replaced in 2009 with an artemisinin-based combination therapy (artesunate-sulfadoxine-pyrimethamine) in an effort to combat multidrug-resistant parasites.

    METHODS: We set out to assess the genetic variants of sulfadoxine-pyrimethamine resistance and the effectiveness of its treatment in eastern India prior to, during, and 6 to 8 years following the introduction of the new pharmacological regime. In 2008-2009, 318 P. falciparum-positive patients got the recommended doses of sulfadoxine-pyrimethamine. We used 379 additional isolates from 2015 to 2017 in addition to the 106 isolates from 2010. All 803 isolates from two study sites underwent in vitro sulfadoxine-pyrimethamine sensitivity testing and genomic characterisation of sulfadoxine-pyrimethamine resistance (pfdhfr and pfdhps).

    RESULTS: In Kolkata and Purulia, we observed early treatment failure in 30.7 and 14.4% of patients, respectively, whereas recrudescence was found in 8.1 and 13.4% of patients, respectively, in 2008-2009. In 2017, the proportion of in vitro pyrimethamine and sulfadoxine resistance steadily grew in Kolkata and Purulia despite a single use of sulfadoxine-pyrimethamine. Treatment failures with sulfadoxine-pyrimethamine were linked to quintuple or quadruple pfdhfr- pfdhps mutations (AICII-AGKAT, AICII-AGKAA, AICII-SGKGT, AICII-AGKAA, AICNI-AGKAA) in 2008-2009 (p < 0.001). The subsequent spread of mutant-haplotypes with higher in vitro sulfadoxine-pyrimethamine resistance (p < 0.001), such as the sextuple (dhfr-AIRNI+dhps-AGEAA, dhfr-ANRNL+dhps-AGEAA) and septuple (dhfr-AIRNI+dhps-AGEAT), mutations were observed in 2015-2017.

    DISCUSSION: This successive spread of mutations with high in vitro sulfadoxine-pyrimethamine resistance confirmed the progressive increase in antifolate resistance even after an 8-year withdrawal of sulfadoxine-pyrimethamine.

    Matched MeSH terms: Drug Resistance/genetics
  11. Alves-Junior ER, Dombroski TCD, Nakazato L, Dutra V, Neves-Costa JD, Katsuragawa TH, et al.
    Trop Biomed, 2022 Sep 01;39(3):421-427.
    PMID: 36214439 DOI: 10.47665/tb.39.3.012
    The early molecular identification of strains of Plasmodium vivax that have a worse prognosis is important to stratify the risk of complications and choice of conduct made by medical teams. Thus, the aim of the present study was to associate the presence of polymorphisms in the pvmdr-1 and pvcrt-o resistance genes of P. vivax in patients with better or worse prognosis. This cross-sectional epidemiological study was conducted based on data obtained from the records of 120 patients diagnosed with malaria in the Brazilian Amazon. The T958M and F1076L mutations of the pvmdr-1 gene had a frequency of 3.3 and 4.2%, respectively, and primo-infected patients had a 17 times greater chance of being infected with protozoa with the T958M mutation compared to patients with previous episodes. Regarding pvcrt-o, the C393T and T786C polymorphisms had a frequency of 14.2 and 3.3%, respectively, and self-declared white patients had a 3.1 times greater chance of being infected with protozoa with the C393T polymorphism. In addition, patients with this pvcrt-o polymorphism had lower concentrations of C-reactive protein, indicating a better prognosis. These data present clues of genetic indicators useful for assessing the virulence of the parasite and the prognosis of patients with vivax malaria.
    Matched MeSH terms: Drug Resistance/genetics
  12. Rumaseb A, Moraes Barros RR, Sá JM, Juliano JJ, William T, Braima KA, et al.
    Antimicrob Agents Chemother, 2023 Jul 18;67(7):e0161022.
    PMID: 37314336 DOI: 10.1128/aac.01610-22
    Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.
    Matched MeSH terms: Drug Resistance/genetics
  13. Alvarez-Fernandez A, Bernal MJ, Fradejas I, Martin Ramírez A, Md Yusuf NA, Lanza M, et al.
    Malar J, 2021 Jan 06;20(1):16.
    PMID: 33407529 DOI: 10.1186/s12936-020-03544-7
    BACKGROUND: The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum.

    METHODS: Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method.

    RESULTS: The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed.

    CONCLUSIONS: The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.

    Matched MeSH terms: Drug Resistance/genetics*
  14. Sangsri R, Choowongkomon K, Tuntipaiboontana R, Sugaram R, Boondej P, Sudathip P, et al.
    Acta Trop, 2023 Dec;248:107016.
    PMID: 37683820 DOI: 10.1016/j.actatropica.2023.107016
    BACKGROUND: The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program.

    METHODS: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates.

    RESULTS: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates.

    CONCLUSIONS: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.

    Matched MeSH terms: Drug Resistance/genetics
  15. Syuhada NH, Merican F, Zaki S, Broady PA, Convey P, Muangmai N
    Sci Rep, 2022 Jan 20;12(1):1080.
    PMID: 35058560 DOI: 10.1038/s41598-022-05116-y
    This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.
    Matched MeSH terms: Drug Resistance/genetics
  16. Sha'ari HM, Haerian BS, Baum L, Saruwatari J, Tan HJ, Rafia MH, et al.
    Pharmacogenomics, 2014 Mar;15(4):459-66.
    PMID: 24624913 DOI: 10.2217/pgs.13.239
    To examine the relevance of ABCC2 polymorphisms to drug responsiveness in epilepsy cohorts from the Asia Pacific region.
    Matched MeSH terms: Drug Resistance/genetics*
  17. Noisang C, Prosser C, Meyer W, Chemoh W, Ellis J, Sawangjaroen N, et al.
    Malar J, 2019 Aug 15;18(1):275.
    PMID: 31416468 DOI: 10.1186/s12936-019-2903-y
    BACKGROUND: Drug resistance within the major malaria parasites Plasmodium vivax and Plasmodium falciparum threatens malaria control and elimination in Southeast Asia. Plasmodium vivax first-line treatment drug is chloroquine together with primaquine, and the first-line treatment for P. falciparum malaria is artemisinin in combination with a partner drug. Plasmodium vivax and P. falciparum parasites resistant to their respective first-line therapies are now found within Southeast Asia. The resistance perimeters may include high transmission regions of Southern Thailand which are underrepresented in surveillance efforts.

    METHODS: This study investigated blood samples from malaria centres in Southern Thailand. Genetic loci associated with drug resistance were amplified and sequenced. Drug resistance associated genes Pvmdr1, Pvcrt-o, Pvdhfr, and Pvdhps were characterized for 145 cases of P. vivax malaria, as well as the artemisinin resistance-associated Pfkelch13 gene from 91 cases of P. falciparum malaria.

    RESULTS: Plasmodium vivax samples from Southern Thai provinces showed numerous chloroquine and antifolate resistance-associated mutations, including SNP and Pvcrt-o K10-insertion combinations suggestive of chloroquine resistant P. vivax phenotypes. A high proportion of the C580Y coding mutation (conferring artemisinin resistance) was detected in P. falciparum samples originating from Ranong and Yala (where the mutation was previously unreported).

    CONCLUSIONS: The results demonstrate a risk of chloroquine and antifolate resistant P. vivax phenotypes in Southern Thailand, and artemisinin resistant P. falciparum observed as far south as the Thai-Malaysian border region. Ongoing surveillance of antimalarial drug resistance markers is called for in Southern Thailand to inform case management.

    Matched MeSH terms: Drug Resistance/genetics*
  18. Tan TK, Lim YAL, Chua KH, Chai HC, Low VL, Bathmanaban P, et al.
    Parasitol Res, 2020 Sep;119(9):2851-2862.
    PMID: 32651637 DOI: 10.1007/s00436-020-06790-5
    The field strain of Haemonchus contortus has a long history of anthelmintic resistance. To understand this phenomenon, the benzimidazole resistance profile was characterized from the Malaysian field-resistant strain by integrating phenotypic, genotypic and proteomic approaches. The faecal egg count reduction test (FECRT) demonstrated that benzimidazole resistance was at a critical level in the studied strain. The primary resistance mechanism was attributed to F200Y mutation in the isotype 1 β-tubulin gene as revealed by AS-PCR and direct sequencing. Furthermore, the protein response of the resistant strain towards benzimidazole (i.e., albendazole) treatment was investigated via two-dimensional difference gel electrophoresis (2D-DIGE) and tandem liquid chromatography-mass spectrometry (LC-MS/MS). These investigations illustrated an up-regulation of antioxidant (i.e., ATP-binding region and heat-shock protein 90, superoxide dismutase) and metabolic (i.e., glutamate dehydrogenase) enzymes and down-regulation of glutathione S-transferase, malate dehydrogenase, and other structural and cytoskeletal proteins (i.e., actin, troponin T). Findings from this study are pivotal in updating the current knowledge on anthelmintic resistance and providing new insights into the defence mechanisms of resistant nematodes towards drug treatment.
    Matched MeSH terms: Drug Resistance/genetics*
  19. Alam MT, Vinayak S, Congpuong K, Wongsrichanalai C, Satimai W, Slutsker L, et al.
    Antimicrob Agents Chemother, 2011 Jan;55(1):155-64.
    PMID: 20956597 DOI: 10.1128/AAC.00691-10
    The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thailand. The dhps mutations and flanking microsatellite loci were genotyped for P. falciparum isolates collected from 11 Thai provinces along the Burma, Cambodia, and Malaysia borders. Results indicated that resistant dhps alleles were fixed in Thailand, predominantly being the SGEGA, AGEAA, and SGNGA triple mutants and the AGKAA double mutant (mutated codons are underlined). These alleles had different geographical distributions. The SGEGA alleles were found mostly at the Burma border, while the SGNGA alleles occurred mainly at the Cambodia border and nearby provinces. Microsatellite data suggested that there were two major genetic lineages of the triple mutants in Thailand, one common for SGEGA/SGNGA alleles and another one independent for AGEAA. Importantly, the newly reported SGNGA alleles possibly originated at the Thailand-Cambodia border. All parasites in the Yala province (Malaysia border) had AGKAA alleles with almost identical flanking microsatellites haplotypes. They were also identical at putatively neutral loci on chromosomes 2 and 3, suggesting a clonal nature of the parasite population in Yala. In summary, this study suggests multiple and independent origins of resistant dhps alleles in Thailand.
    Matched MeSH terms: Drug Resistance/genetics
  20. Madkhali AM, Al-Mekhlafi HM, Atroosh WM, Ghzwani AH, Zain KA, Abdulhaq AA, et al.
    Malar J, 2020 Dec 02;19(1):446.
    PMID: 33267841 DOI: 10.1186/s12936-020-03524-x
    BACKGROUND: Despite significant progress in eliminating malaria from the Kingdom of Saudi Arabia, the disease is still endemic in the southwestern region of the country. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used in Saudi Arabia since 2007 as a first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to artemisinin and sulfadoxine-pyrimethamine (SP) resistance in P. falciparum parasites circulating in Jazan region, southwestern Saudi Arabia.

    METHODS: A total of 151 P. falciparum isolates were collected between April 2018 and March 2019 from 12 of the governorates in Jazan region. Genomic DNA was extracted from dried blood spots and amplified using nested PCR. Polymorphisms in the propeller domain of the P. falciparum k13 (pfkelch13) gene and point mutations in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes were identified by sequencing.

    RESULTS: No mutations in the pfkelch13 propeller domain were found in any of the 151 isolates. However, point mutations in the pfdhfr and pfdhps genes were detected in 90.7% (137/151) of the isolates. The pfdhfr double mutations N51I + S108N (i.e. ACICNI haplotype) and triple mutations N51I + C59R + S108N (i.e. ACIRNI haplotype) were detected in 47% and 37.8% of the isolates, respectively. Moreover, the pfdhps single mutation at codon A437G and double mutations A437G + K540E (i.e. SGEAAI haplotype) were observed in 4.6% and 51.7% of the isolates, respectively. Interestingly, 23.8%, 25.1 and 12.6% of the isolates had quintuple, quadruple and triple mutated combined pfdhfr-pfdhps genotypes, respectively. Furthermore, significant associations were found between the prevalence of mutant haplotypes and the age, gender and nationality of the patients (P drug, thereby threatening the main falciparum malaria treatment policy in Saudi Arabia, i.e. the use of AS + SP. Therefore, the continuous molecular and in-vivo monitoring of ACT efficacy in Jazan region is highly recommended.

    Matched MeSH terms: Drug Resistance/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links