METHODS: This retrospective study included 141 pre-treatment and near-end treatment lateral cephalometric radiographs of Class II division 1 malocclusion patients aged 16-40 years with a skeletal II pattern (ANB > 4o). 32 landmarks in Cartesian coordinates were created and identified using MorphoJ software to establish a shape analysis.
RESULTS: The vertical dimensions (hypodivergent to hyperdivergent facial profiles) showed the largest variation in the general shape of hard and soft tissue, followed by the anteroposterior dimensions (mild to severe skeletal II patterns). Variations of lip shape (long to short), lip protuberance (everted to inverted), and nasolabial angle (obtuse to acute) were present. Orthodontic treatment affected the shape of the hard and soft tissue significantly (p
METHODS: The pre- and post-operative CT images of 55 patients undergoing DC surgery were analyzed. The ICV was measured by segmenting every slice of the CT images, and compared with estimated ICV calculated using the 1-in-10 sampling strategy and processed using the SBI method. An independent t test was conducted to compare the ICV measurements between the two different methods. The calculation using this method was repeated three times for reliability analysis using the intraclass correlations coefficient (ICC). The Bland-Altman plot was used to measure agreement between the methods for both pre- and post-operative ICV measurements.
RESULTS: The mean ICV (±SD) were 1341.1±122.1ml (manual) and 1344.11±122.6ml (SBI) for the preoperative CT data. The mean ICV (±SD) were 1396.4±132.4ml (manual) and 1400.53±132.1ml (SBI) for the post-operative CT data. No significant difference was found in ICV measurements using the manual and the SBI methods (p=.983 for pre-op, and p=.960 for post-op). The intrarater ICC showed a significant correlation; ICC=1.00. The Bland-Altman plot showed good agreement between the manual and the SBI method.
CONCLUSION: The shape-based interpolation method with 1-in-10 sampling strategy gave comparable results in estimating ICV compared to manual segmentation. Thus, this method could be used in clinical settings for rapid, reliable and repeatable ICV estimations.
METHODS: In this study a novel system named Ceph-X is developed to computerize the manual tasks of orthodontics during cephalometric measurements. Ceph-X is developed by using image processing techniques with three main models: enhancements X-ray image model, locating landmark model, and computation model. Ceph-X was then evaluated by using X-ray images of 30 subjects (male and female) obtained from University of Malaya hospital. Three orthodontics specialists were involved in the evaluation of accuracy to avoid intra examiner error, and performance for Ceph-X, and 20 orthodontics specialists were involved in the evaluation of the usability, and user satisfaction for Ceph-X by using the SUS approach.
RESULTS: Statistical analysis for the comparison between the manual and automatic cephalometric approaches showed that Ceph-X achieved a great accuracy approximately 96.6%, with an acceptable errors variation approximately less than 0.5 mm, and 1°. Results showed that Ceph-X increased the specialist performance, and minimized the processing time to obtain cephalometric measurements of human skull. Furthermore, SUS analysis approach showed that Ceph-X has an excellent usability user's feedback.
CONCLUSIONS: The Ceph-X has proved its reliability, performance, and usability to be used by orthodontists for the analysis, diagnosis, and treatment of cephalometric.
MATERIALS AND METHODS: This study included 64 sets of digitised maxilla and mandible dental casts obtained from a sample of dental arch with normal occlusion. For human evaluation, a convenient sample of orthodontic practitioners ranked the photo images of dental cast from the most tapered to the less tapered (square). In the mathematical analysis, dental arches were interpolated using the fourth-order polynomial equation with millimetric acetate paper and AutoCAD software. Finally, the relations between human evaluation and mathematical objective analyses were evaluated.
RESULTS: Human evaluations were found to be generally in agreement, but only at the extremes of tapered and square arch forms; this indicated general human error and observer bias. The two methods used to plot the arch form were comparable.
CONCLUSION: The use of fourth-order polynomial equation may be facilitative in obtaining a smooth curve, which can produce a template for individual arch that represents all potential tooth positions for the dental arch.