Displaying all 13 publications

Abstract:
Sort:
  1. Zurina Z, Elizawaty O, Thevarajah S, Norlijah O
    Med J Malaysia, 2012 Feb;67(1):105-7.
    PMID: 22582558
    Dapsone syndrome is a potentially fatal hypersensitivity reaction to sulphone. We report a 12-year-old girl who developed high grade fever associated with intense jaundice, exfoliative skin rash and hepatomegaly after five weeks of starting the multidrug regimen for the treatment of Hansen's disease. Laboratory investigations revealed presence of leucocytosis with eosinophilia, deranged liver enzymes and an abnormal coagulation profile. Immediate cessation of the offending drug and administration of steroid proved successful. A high level of clinical awareness is fundamental for early diagnosis of dapsone syndrome as initiation of a prompt treatment may lead to rapid recovery.
    Matched MeSH terms: Anti-Infective Agents/adverse effects*
  2. Mohamed KB
    J Pediatr, 1999 Sep;135(3):396.
    PMID: 10484812
    Matched MeSH terms: Anti-Infective Agents/adverse effects*
  3. Lau HJ, Lim CH, Foo SC, Tan HS
    Curr Genet, 2021 Jun;67(3):421-429.
    PMID: 33585980 DOI: 10.1007/s00294-021-01156-5
    Antimicrobial resistance (AMR) in bacteria is a global health crisis due to the rapid emergence of multidrug-resistant bacteria and the lengthy development of new antimicrobials. In light of this, artificial intelligence in the form of machine learning has been viewed as a potential counter to delay the spread of AMR. With the aid of AI, there are possibilities to predict and identify AMR in bacteria efficiently. Furthermore, a combination of machine learning algorithms and lab testing can help to accelerate the process of discovering new antimicrobials. To date, many machine learning algorithms for antimicrobial-resistance discovery had been created and vigorously validated. Most of these algorithms produced accurate results and outperformed the traditional methods which relied on sequence comparison within a database. This mini-review will provide an updated overview of antimicrobial design workflow using the latest machine-learning antimicrobial discovery algorithms in the last 5 years. With this review, we hope to improve upon the current AMR identification and antimicrobial development techniques by introducing the use of AI into the mix, including how the algorithms could be made more effective.
    Matched MeSH terms: Anti-Infective Agents/adverse effects
  4. Teh SW, Mok PL, Abd Rashid M, Bastion MC, Ibrahim N, Higuchi A, et al.
    Int J Mol Sci, 2018 Feb 13;19(2).
    PMID: 29438279 DOI: 10.3390/ijms19020558
    Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.
    Matched MeSH terms: Anti-Infective Agents/adverse effects
  5. Yew KL, Lee WC
    Med J Malaysia, 2012 Aug;67(4):420-1.
    PMID: 23082454 MyJurnal
    Matched MeSH terms: Anti-Infective Agents/adverse effects
  6. Peh K, Khan T, Ch'ng H
    J Pharm Pharm Sci, 2000 Sep-Dec;3(3):303-11.
    PMID: 11177648
    To investigate the suitability of chitosan films prepared using two different solvents, acetic acid (Chitosan-AA) and lactic acid (Chitosan-LA), for wound dressing, in comparison with a commercial preparation, Omiderm.
    Matched MeSH terms: Anti-Infective Agents/adverse effects
  7. Nagreh DS
    Int J Dermatol, 1976 1 1;15(1):34-5.
    PMID: 1352
    Matched MeSH terms: Anti-Infective Agents/adverse effects*
  8. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Int J Mol Sci, 2014 Mar 07;15(3):4158-88.
    PMID: 24608927 DOI: 10.3390/ijms15034158
    The gut microbiota plays a number of important roles including digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against pathogen colonization, and modulation of the immune system. Alterations or changes in composition and biodiversity of the gut microbiota have been associated with many gastrointestinal tract (GIT) disorders such as inflammatory bowel disease and colon cancer. Recent evidence suggests that altered composition and diversity of gut microbiota may play a role in the increased prevalence of metabolic diseases. This review article has two main objectives. First, it underscores approaches (such as probiotics, prebiotics, antimicrobial agents, bariatric surgery, and weight loss strategies) and their prospects in modulating the gut microbiota in the management of metabolic diseases. Second, it highlights some of the current challenges and discusses areas of future research as it relates to the gut microbiota and metabolic diseases. The prospect of modulating the gut microbiota seems promising. However, considering that research investigating the role of gut microbiota in metabolic diseases is still in its infancy, more rigorous and well-designed in vitro, animal and clinical studies are needed.
    Matched MeSH terms: Anti-Infective Agents/adverse effects
  9. Pakianathan MR, Kamarulzaman A, Ismail R, McMillan A, Scott GR
    AIDS, 1999 Sep 10;13(13):1787-8.
    PMID: 10509585
    Matched MeSH terms: Anti-Infective Agents/adverse effects*
  10. Jahan D, Peile E, Sheikh MA, Islam S, Parasnath S, Sharma P, et al.
    Expert Rev Anti Infect Ther, 2021 10;19(10):1259-1280.
    PMID: 33711240 DOI: 10.1080/14787210.2021.1902304
    INTRODUCTION: Hematopoietic Stem Cell Transplantation (HSCT) is a life-saving procedure for multiple types of hematological cancer, autoimmune diseases, and genetic-linked metabolic diseases in humans. Recipients of HSCT transplant are at high risk of microbial infections that significantly correlate with the presence of graft-versus-host disease (GVHD) and the degree of immunosuppression. Infection in HSCT patients is a leading cause of life-threatening complications and mortality.

    AREAS COVERED: This review covers issues pertinent to infection in the HSCT patient, including bacterial and viral infection; strategies to reduce GVHD; infection patterns; resistance and treatment options; adverse drug reactions to antimicrobials, problems of antimicrobial resistance; perturbation of the microbiome; the role of prebiotics, probiotics, and antimicrobial peptides. We highlight potential strategies to minimize the use of antimicrobials.

    EXPERT OPINION: Measures to control infection and its transmission remain significant HSCT management policy and planning issues. Transplant centers need to consider carefully prophylactic use of antimicrobials for neutropenic patients. The judicious use of appropriate antimicrobials remains a crucial part of the treatment protocol. However, antimicrobials' adverse effects cause microbiome diversity and dysbiosis and have been shown to increase morbidity and mortality.

    Matched MeSH terms: Anti-Infective Agents/adverse effects
  11. Wang YH, Chen CB, Tassaneeyakul W, Saito Y, Aihara M, Choon SE, et al.
    Clin. Pharmacol. Ther., 2019 01;105(1):112-120.
    PMID: 29569740 DOI: 10.1002/cpt.1071
    Specific ethnic genetic backgrounds are associated with the risk of Stevens-Johnson syndrome / toxic epidermal necrolysis (SJS/TEN) especially in Asians. However, there have been no large cohort, multiple-country epidemiological studies of medication risk related to SJS/TEN in Asian populations. Thus, we analyzed the registration databases from multiple Asian countries who were treated during 1998-2017. A total 1,028 SJS/TEN cases were identified with the algorithm of drug causality for epidermal necrolysis. Furthermore, those medications labeled by the US Food and Drug Administration (FDA) as carrying a risk of SJS/TEN were also compared with the common causes of SJS/TEN in Asian countries. Oxcarbazepine, sulfasalazine, COX-II inhibitors, and strontium ranelate were identified as new potential causes. In addition to sulfa drugs and beta-lactam antibiotics, quinolones were also a common cause. Only one acetaminophen-induced SJS was identified, while several medications (e.g., oseltamivir, terbinafine, isotretinoin, and sorafenib) labeled as carrying a risk of SJS/TEN by the FDA were not found to have caused any of the cases in the Asian countries investigated in this study.
    Matched MeSH terms: Anti-Infective Agents/adverse effects
  12. Choon SE, Lai NM
    Indian J Dermatol Venereol Leprol, 2012 Nov-Dec;78(6):734-9.
    PMID: 23075643 DOI: 10.4103/0378-6323.102367
    BACKGROUND: The prevalence, clinical patterns, and causative drugs of cutaneous adverse drug reactions (cADR) vary among the different populations previously studied.
    AIM: To determine the prevalence, the clinical patterns of drug eruptions, and the common drugs implicated, particularly in severe cADR such as Stevens-Johnson Syndrome/Toxic epidermal necrolysis (SJS/TEN) and drug rash with eosinophilia and systemic symptoms (DRESS) in our population.
    METHODS: We analyzed the database established for all cADR seen by the department of Dermatology from January 2001 till December 2010.
    RESULTS: A total of 362 cADR were seen among 42 170 new clinic attendees, yielding an incidence rate of 0.86%. The most common reaction pattern seen was maculopapular eruption (153 cases) followed by SJS/TEN (110 cases) and DRESS (34 cases). Antibiotics was the most commonly implicated drug group (146 cases) followed by anticonvulsants (81 cases) and antigout drugs (50 cases). The most frequently implicated drug was allopurinol (50 cases). Carbamazepine, allopurinol, and cotrimoxazole were the three main causative drugs of SJS/TEN accounting for 21.8%, 20.9%, and 12.7%, respectively, of the 110 cases seen, whereas DRESS was mainly caused by allopurinol (15 cases). Mortality rates for TEN, SJS, and DRESS were 28.6%, 2.2%, and 5.9%, respectively.
    CONCLUSIONS: The low rate of cADR with a high proportion of severe reactions observed in this study was probably due to referral bias. Otherwise, the reaction patterns and drugs causing cADR in our population were similar to those seen in other countries. Carbamazepine, allopurinol, and cotrimoxazole were the three main causative drugs of SJS/TEN in our population.
    Study site: department of dermatology in Hospital Sultanah Aminah
    Matched MeSH terms: Anti-Infective Agents/adverse effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links