STUDY DESIGN: Blinded assessments were conducted at 2-3 years corrected age with the Bayley Scales of Infant and Toddler Development, Third Edition or the Ages and Stages Questionnaire by intention to treat.
RESULTS: Of the 290 children enrolled, 40 could not be contacted and 10 failed to attend appointments. Among the 240 children for whom outcomes at age 2 years were available, 1 child had a lethal congenital anomaly, 1 child had consent for follow-up withdrawn, and 23 children died. The primary outcome, which was available in 238 (82%) of those randomized, occurred in 47 of the 117 (40%) children assigned to initial FiO2 0.21 and in 38 of the 121 (31%) assigned to initial FiO2 1.0 (OR, 1.47; 95% CI, 0.86-2.5; P = .16). No difference in NDI was found in 215 survivors randomized to FiO2 0.21 vs 1.0 (OR, 1.26; 95% CI, 0.70-2.28; P = .11). In post hoc exploratory analyses in the whole cohort, children with a 5-minute blood oxygen saturation (SpO2) <80% were more likely to die or to have NDI (OR, 1.85; 95% CI, 1.07-3.2; P = .03).
CONCLUSIONS: Initial resuscitation of infants <32 weeks' gestation with initial FiO2 0.21 had no significant effect on death or NDI compared with initial FiO2 1.0. Further evaluation of optimum initial FiO2, including SpO2 targeting, in a large randomized controlled trial is needed.
TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Network Registry ACTRN 12610001059055 and the National Malaysian Research Registry NMRR-07-685-957.
STUDY DESIGN: We assessed data from 6414 children aged 6-18 years, collected by the South East Asia Community Observatory. Child underweight, overweight, and obesity were expressed according to 3 internationally used BMI references: World Health Organization 2007, International Obesity Task Force 2012, and Centers for Disease Control and Prevention 2000. We assessed agreement in classification of anthropometric status among the references using Cohen's kappa statistic and estimated underweight, overweight, and obesity prevalence according to each reference using mixed effects Poisson regression.
RESULTS: There was poor to moderate agreement between references when classifying underweight, but generally good agreement when classifying overweight and obesity. Underweight, overweight, and obesity prevalence estimates generated using the 3 references were notably inconsistent. Overweight and obesity prevalence estimates were higher using the World Health Organization reference vs the other 2, and underweight prevalence was up to 8.5% higher and obesity prevalence was about 4% lower when using the International Obesity Task Force reference.
CONCLUSIONS: The choice of reference to express BMI may influence conclusions about child anthropometric status and malnutrition prevalence. This has implications regarding strategies for clinical management and public health interventions.
STUDY DESIGN: In this retrospective cohort study, we included children aged 5-20 years who received regular outpatient care at a large academic medical center between January 1996 and April 2016. BMI was expressed as age- and sex-specific percentiles and BP as age-, sex-, and height-specific percentiles. Linear mixed models incorporating linear spline functions with 2 breakpoints at 9 and 12 years of age were used to estimate the changes in BMI and BP percentiles over time during age periods: <9, 9-<12, and >12 years of age.
RESULTS: Among 5703 children (24.8% black, 10.1% Hispanic), Hispanic females had an increased rate of change in BMI percentile per year relative to white females during ages 5-9 years (+2.94%; 95% CI, 0.24-5.64; P = .033). Black and Hispanic males also had an increased rate of change in BMI percentile per year relative to white males that occurred from ages 5-9 (+2.35% [95% CI, 0.76-3.94; P = .004]; +2.63% [95% CI, 0.31-4.95; P = .026], respectively). There were no significant racial differences in the rate of change of BP percentiles, although black females had higher hypertension rates compared with white females (10.0% vs 5.7%; P