Displaying publications 1 - 20 of 322 in total

Abstract:
Sort:
  1. Bisseru B, Lim KG
    Med J Malaya, 1968 Mar;22(3):236.
    PMID: 4234371
    Matched MeSH terms: Amino Acids/analysis*
  2. Mohamed R, Degac J, Helms V
    PLoS One, 2015;10(10):e0140965.
    PMID: 26517868 DOI: 10.1371/journal.pone.0140965
    Protein-protein interactions (PPIs) play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP) complexes, and 161 protein-ligand (PL) complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.
    Matched MeSH terms: Amino Acids
  3. Lugg JWH, McEvoy-Bowe E
    Nature, 1957;179:1076.
    IN connexion with a programme of studies of the relationships between biochemical and ethnological differentiations (some aspects of which have already been discussed1) proceeding in this Department, we wished to explore the possibility of improving existing procedures for the estimation of amino-acids separated on paper chromatograms2, before beginning an investigation of the patterns of urinary excretion of amino-acids by normal members of various ethnic groups living in Malaya.
    Matched MeSH terms: Amino Acids
  4. Chua KWJ, Liew JH, Wilkinson CL, Ahmad AB, Tan HH, Yeo DCJ
    J Anim Ecol, 2021 06;90(6):1433-1443.
    PMID: 33666230 DOI: 10.1111/1365-2656.13462
    Studies have shown that food chain length is governed by interactions between species richness, ecosystem size and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by initial high levels of trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.
    Matched MeSH terms: Amino Acids*
  5. Almashwali AA, Khan MS, Lal B, Jin QC, Sabil KM, Khor SF
    Chemosphere, 2023 Jan;312(Pt 2):137325.
    PMID: 36423723 DOI: 10.1016/j.chemosphere.2022.137325
    This experimental study evaluates the inhibition performance of kinetic hydrates inhibitors (KHIs) of three amino acids, namely: glycine, proline, and alanine. It includes the performance comparison with the conventional inhibitor i.e., polyvinyl pyrrolidine (PVP) on methane (CH4) hydrate in oil systems in two different systems, i.e., deionized and brine water systems. The experiments were conducted in a high-pressure hydrate reactor replicating subsea pipeline conditions, i.e., the temperature of 274 K, pressure 8 MPa, and concentration of 1 wt%, by applying the isochoric cooling technique. The formation kinetics results suggest that all the studied amino acids effectively worked as kinetic inhibitors by potentially delaying CH4 hydrate formations due to their steric hindrance abilities. The interesting phenomenon was observed that the different studied amino acids behave differently in the brine-oil and deionized water-oil systems due to their side chain interaction. In a deionized water-oil system, glycine gives the highest inhibition performance by reducing the hydrate formation risk. On the contrary, in the brine-oil system, proline showed a significant inhibition effect. It should be noted that both glycine and proline were giving almost similar inhibition performance compared to the conventional hydrate inhibitor PVP, however glycine and proline significantly reduced CH4 consumption into hydrate due to their high surface active under CH4 conditions, which strengths the surface tension of the liquid/CH4 interface. Furthermore, according to the findings, it shows that increased side alkyl chain lengths of amino acids increase the efficacy of their kinetic hydration inhibition performance due to better surface adsorption abilities. The amino acids' ability to suppress growth is also linked strongly with hydrophobicity and alkyl side chain length. The findings of this study contribute significantly to current efforts to limit gas hydrate formation in offshore pipelines, particularly in oil-dominant pipelines.
    Matched MeSH terms: Amino Acids*
  6. Tang LW, Alias Y, Zakaria R, Woi PM
    Crit Rev Anal Chem, 2023;53(4):869-886.
    PMID: 34672838 DOI: 10.1080/10408347.2021.1989657
    A detailed overview toward the advancement of amino acid-based electrochemical sensors on the detection of heavy metals is presented. Discussion is focused on the unique properties of various amino acids (AAs) and its composites which allow them being employed in a diverse range of sensing platforms. Formation of metal-ligand complexes in between metal ions and different AAs has been discussed. The essential insights on the interaction between amino acid-based sensors and target heavy metal ions (HMIs) are provided, along with the discussion on their pros and cons. Voltammetry analysis of metal ions based on various interfaces of electrochemical sensors has been highlighted, together with the incorporation of AAs with organic, inorganic and bio-materials. In all these cases, the amino acid modified electrodes have demonstrated large active surface area with abundant adsorption sites for HMIs. The developed sensors are promising for environmental applications, as evidenced by the high selectivity, high sensitivity, high catalytic activity, and low detection limits. The materials involved, fabrication techniques and its sensing mechanism were comprehensively discussed, and the future outlooks of electrochemical sensing platforms are emphasized in this review.
    Matched MeSH terms: Amino Acids*
  7. Toe CJ, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, Idrus Z
    Int J Mol Sci, 2019 Apr 10;20(7).
    PMID: 30974873 DOI: 10.3390/ijms20071777
    Amino acids (AAs) are vital elements for growth, reproduction, and maintenance of organisms. Current technology uses genetically engineered microorganisms for AAs production, which has urged the search for a safer food-grade AA producer strain. The extracellular proteolytic activities of lactic acid bacteria (LAB) can be a vital tool to hydrolyze extracellular protein molecules into free AAs, thereby exhibiting great potential for functional AA production. In this study, eight LAB isolated from Malaysian foods were determined for their extracellular proteolytic activities and their capability of producing AAs. All studied LAB exhibited versatile extracellular proteolytic activities from acidic to alkaline pH conditions. In comparison, Pediococcus pentosaceus UP-2 exhibited the highest ability to produce 15 AAs extracellularly, including aspartate, lysine, methionine, threonine, isoleucine, glutamate, proline, alanine, valine, leucine, tryptophan, tyrosine, serine, glycine, and cystine, followed by Pediococcus pentosaceus UL-2, Pediococcus acidilactici UB-6, and Pediococcus acidilactici UP-1 with 11 to 12 different AAs production detected extracellularly. Pediococcus pentosaceus UL-6 demonstrated the highest increment of proline production at 24 h of incubation. However, Pediococcusacidilactici UL-3 and Lactobacillus plantarum I-UL4 exhibited the greatest requirement for AA. The results of this study showed that different LAB possess different extracellular proteolytic activities and potentials as extracellular AA producers.
    Matched MeSH terms: Amino Acids/metabolism*
  8. M. J. Khatun, T.C. Loh, H.L. Foo, M.K.I. Khan
    MyJurnal
    Amino acids are known as anabolic factors that are essential for formation of muscle by stimulating protein synthesis while inhibiting proteolysis, and they are significant component for the synthesis of various nitrogenous compounds. There are 20 amino acids are essential to require in cell for formation of body protein of which about 10 amino acids, which cannot be synthesized by the birds are termed essential. Among the essential amino acid arginine one of the essential amino acids for chickens because, like other birds, they are unable to obtain Arginine from endogenous sources due to the absence of most of the enzymes involved in the urea cycle. This amino acid involved in synthesis of proline, hydroxyl proline and polyamines which are essential for connective tissue synthesis as well as increased growth of chicken. Moreover, L-arginine (L-Arg) is effective for reducing fat deposition in broiler. Moreover, it decrease heat stress increase meat quality and increase immune response of broiler. This re-view presents the recent advances in the relevance of the inclusion of excess L-Arginine in broiler ration to growth, fat deposition and immune response in broiler.
    Matched MeSH terms: Amino Acids; Amino Acids, Essential; Amino Acids, Basic
  9. Bao L, Yang R, Diao D, Tian F, Chen Y, Zheng B, et al.
    Food Chem, 2025 Feb 01;464(Pt 1):141466.
    PMID: 39406135 DOI: 10.1016/j.foodchem.2024.141466
    This study investigated the effect of different reheating treatments on gel properties and flavor changes of surimi products. As the reheating temperature increased from 90 °C to 121 °C, the heat-induced proteolysis produced more abundant umami and sweet amino acids, which took part in the conversion of IMP to AMP, thus enhancing the taste profiles. Reheating increased the exposure of active -NH2 terminals in proteins, which boosted Maillard and Strecker reactions with carbonyl compounds originated from fatty acid oxidation, thus not only reducing the aldehydes and esters contents but also lowering the whiteness of surimi products. Reheating at 90 °C prohibited the production of warmed-over flavor (WOF) and well-preserved the textural characteristics, but high temperatures ≥100 °C were prone to generate furan as the major WOF substance and to destroy gel structures. Collectively, this study provides new insights on understanding the role of reheating on sensory properties of surimi products.
    Matched MeSH terms: Amino Acids/analysis; Amino Acids/chemistry
  10. Jais AM, McCulloch R, Croft K
    Gen. Pharmacol., 1994 Sep;25(5):947-50.
    PMID: 7835642
    1. Two species of snakehead fish are available in Sabah, i.e. Channa striatus and Channa melanosoma, and are commonly known as haruan. Haruan is consumed by many Malaysians to induce healing after a clinical operations. However, there is no scientific evidence as yet to substantiate the claim, and so it was decided to analyse the biochemical composition in haruan to determine which compounds may have a possible role or potential in wound healing. 2. Samples (midline fillet) of both species were extracted separately in hexane for the qualitative analysis of fatty acids by a gas chromatography, Hewlett-Packard 5890A, using a 10 meter superox 11 column (Alltech) at temperature between 190 and 245 degrees C. Peak areas were calculated automatically using Hewlett-Packard 3393A computing integrator. Subsequently, the amino acid composition was analysed using a precolumn derivatization reverse phase HPLC waters PICO-TAG system. 3. Haruan is found to contain unusually high arachidonic acid (AA) but almost no eicosapentaenoic acid (EPA). AA which is a precursor of prostaglandin may initiate blood clotting and be responsible for growth. Haruan also contains all the essential amino acids for wound healing, particularly glycine which is the most important component of human skin collagen. Therefore, haruan contained all the basic biochemical requirements for wound healing.
    Matched MeSH terms: Amino Acids/analysis*
  11. Chan, Kok Meng, Farah Diyana Ariffin, Aminah Abdullah, Shahrul Hisham Zainal Ariffin
    MyJurnal
    Seaweed contains various nutrients that has the potential to be a source of nutritious food, but only a few studies done on
    the red seaweeds in Malaysia. Therefore, this study was conducted to determine the macronutrients content, amino acid
    profile and fatty acid component in Kappaphycus alvarezii and Kappaphycus striatum. The study found that the range
    of moisture, fat, ash, protein, fiber and carbohydrates content for both red seaweeds were 6.9% - 7.3%, 0.5% - 2.6%,
    29.4% - 30.9%, 2.5% - 5.7% , 5.3% - 5.5% and 50.1% - 53.3% respectively. A total of 16 amino acids were identified
    in which the essential amino acid for K. alvarezii and K. striatum were 41.11% and 36.15% respectively. A total of 34
    fatty acids were identified in which the content of saturated fatty acids (SFA) was the highest (42.7% - 72.8%), followed
    by mono-unsaturated fatty acid (MUFA) (13.8% - 36.2%) and polyunsaturated fatty acids (PUFAs) was the lowest (13.5%
    - 21.2%). In conclusion, this study suggest that K. alvarezii and K. striatum are potentially be used as raw materials or
    food ingredients to improve the nutritional value of the human diet.
    Matched MeSH terms: Amino Acids; Amino Acids, Essential
  12. Ghani NSA, Emrizal R, Moffit SM, Hamdani HY, Ramlan EI, Firdaus-Raih M
    Nucleic Acids Res, 2022 Jul 05;50(W1):W375-W383.
    PMID: 35639505 DOI: 10.1093/nar/gkac402
    The GrAfSS (Graph theoretical Applications for Substructure Searching) webserver is a platform to search for three-dimensional substructures of: (i) amino acid side chains in protein structures; and (ii) base arrangements in RNA structures. The webserver interfaces the functions of five different graph theoretical algorithms - ASSAM, SPRITE, IMAAAGINE, NASSAM and COGNAC - into a single substructure searching suite. Users will be able to identify whether a three-dimensional (3D) arrangement of interest, such as a ligand binding site or 3D motif, observed in a protein or RNA structure can be found in other structures available in the Protein Data Bank (PDB). The webserver also allows users to determine whether a protein or RNA structure of interest contains substructural arrangements that are similar to known motifs or 3D arrangements. These capabilities allow for the functional annotation of new structures that were either experimentally determined or computationally generated (such as the coordinates generated by AlphaFold2) and can provide further insights into the diversity or conservation of functional mechanisms of structures in the PDB. The computed substructural superpositions are visualized using integrated NGL viewers. The GrAfSS server is available at http://mfrlab.org/grafss/.
    Matched MeSH terms: Amino Acids/chemistry
  13. Sharuddin SS, Ramli N, Yusoff MZM, Muhammad NAN, Ho LS, Maeda T
    J Appl Microbiol, 2023 Oct 04;134(10).
    PMID: 37757470 DOI: 10.1093/jambio/lxad219
    AIMS: This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers.

    METHODS AND RESULTS: The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR  4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites.

    CONCLUSIONS: The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.

    Matched MeSH terms: Amino Acids/metabolism
  14. Vasudevan V, Prabaharan J, Krishnan N, K A, Gopinath SCB, Raman P
    Anal Methods, 2023 Aug 03;15(30):3735-3751.
    PMID: 37493014 DOI: 10.1039/d3ay00704a
    Borassus flabellifer L., commonly known as Asian palmyra, is native to South and Southeast Asia. The endosperms of B. flabellifer (known as nungu in Dravidian culture) are widely consumed during the summer season. It is rich in various nutrients and helps in reducing weight, treating skin and digestive issues, lowering body temperature, and managing migraines and diabetes. This study focuses on identifying the small molecules and proteins from the two varieties of B. flabellifer tender fruit endosperms collected from districts around Chennai, Tamil Nadu, India. The collected free nuclear endosperm was subjected to direct extraction and the mesocarp and cellular endosperms were lyophilized and homogenized. Metabolites were extracted by hexane, methanol, and chloroform and investigated using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The compounds identified were from the classes of carboxylic acids, flavonoids, amino acids, alkaloids, fatty acids, oligopeptides, vitamins, and glycosides. High-performance liquid chromatography (HPLC) technique was employed to estimate the quantity of amino acids, wherein the total amino acid in the green variety was found to be higher than in the black variety. Proteins were identified after simulating with a gastrointestinal enzyme using liquid chromatography tandem mass spectrometry (LC-MS/MS)-based peptide mass fingerprinting. The different mineral oxides present in the tender fruit endosperm were identified using X-ray diffraction studies, which confirmed the presence of mineral oxides, such as Br1.25ClO2.75Pb3.88, calcium zirconium tantalum oxide, and barium fluoroniobate. This study validates the presence of bioactive metabolites in green and black varieties of B. flabellifer tender fruit endosperm with a range of activities, such as anti-inflammatory, antibacterial, anticancer, and anti-diabetic properties.
    Matched MeSH terms: Amino Acids/metabolism
  15. Shafaei A, Aisha AF, Siddiqui MJ, Ismail Z
    Pharmacognosy Res, 2015 Jan-Mar;7(1):32-7.
    PMID: 25598632 DOI: 10.4103/0974-8490.147196
    Ficus deltoidea (FD) is one of the native plants widely distributed in several countries in Southeast Asia. Previous studies have shown that FD leaf possess antinociceptive, wound healing and antioxidant properties. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids and flavonoids.
    Matched MeSH terms: Amino Acids; Amino Acids, Basic
  16. Mohd Nurazzi Norizan, Khalina Abdan, Mohd Sapuan Salit, Rahmah Mohamed
    Sains Malaysiana, 2018;47:699-705.
    The aim of this paper was to describe the effects of treated sugar palm yarn fibre loading on the mechanical properties
    of reinforced unsaturated polyester composites. Composites with varying fibre loads (10, 20, 30, 40 and 50 wt. %) were
    prepared using a hand-layup process. The composites were tested for tensile, flexural and impact strength according to
    ASTM D3930, ASTM D790 and ASTM D256 standards, respectively. The results showed that an increase in fibre loading
    of up to 30 wt. % increased tensile strength (31.27 MPa), tensile modulus (4.83 GPa), flexural strength (58.14 MPa)
    and modulus (4.48 GPa). Maximum loading can be attained at 40 wt. % of fibre loading for impact strength (38 kJ/
    m2). The effectiveness of stress transfer mechanism through the fibre-matrix interaction, coupled with the optimization
    of fibre loading in resisting fracture and failure, boosts the overall mechanical performance of sugar palm composite.
    Matched MeSH terms: Amino Acids
  17. Au SX, Mohd Padzil A, Muhd Noor ND, Matsumura H, Raja Abdul Rahman RNZ, Normi YM
    PLoS One, 2023;18(9):e0291012.
    PMID: 37672512 DOI: 10.1371/journal.pone.0291012
    BLEG-1 from Bacillus lehensis G1 is an evolutionary divergent B3 metallo-β-lactamase (MBL) that exhibited both β-lactamase and glyoxalase II (GLXII) activities. Sequence, phylogeny, biochemical and structural relatedness of BLEG-1 to B3 MBL and GLXII suggested BLEG-1 might be an intermediate in the evolutionary path of B3 MBL from GLXII. The unique active site cavity of BLEG-1 that recognizes both β-lactam antibiotics and S-D-lactoylglutathione (SLG) had been postulated as the key factor for its dual activity. In this study, dynamic ensembles of BLEG-1 and its substrate complexes divulged conformational plasticity and binding modes of structurally distinct substrates to the enzyme, providing better insights into its structure-to-function relationship and enzymatic promiscuity. Our results highlight the flexible nature of the active site pocket of BLEG-1, which is governed by concerted loop motions involving loop7+α3+loop8 and loop12 around the catalytic core, thereby moulding the binding pocket and facilitate interactions of BLEG-1 with both ampicillin and SLG. The distribution of (i) predominantly hydrophobic amino acids in the N-terminal domain, and (ii) flexible amino acids with polar and/or charged side chains in both N- and C-termini provide additional advantages to BLEG-1 in confining the aromatic group of ampicillin, and polar groups of SLG, respectively. The importance of these residues for substrates binding was further confirmed by the reduction in MBL and GLXII activities upon alanine substitutions of Ile-10, Phe-57, Arg-94, Leu-95, and Arg-159. Based on molecular dynamics simulation, mutational, and biochemical data presented herein, the catalytic mechanisms of BLEG-1 toward the hydrolysis of β-lactams and SLG were proposed.
    Matched MeSH terms: Amino Acids
  18. Ezzat MA, Zare D, Karim R, Ghazali HM
    Food Chem, 2015 Apr 1;172:893-9.
    PMID: 25442635 DOI: 10.1016/j.foodchem.2014.09.158
    Ikan pekasam is a fermented fish product produced in Malaysia and is usually made from freshwater fish with ground roasted uncooked rice as the main source of carbohydrate. In this study, the amino acid, biogenic amine, and trans- and cis-urocanic acid (UCA) contents of fifteen commercial samples of Ikan pekasam made from Javanese carp and black tilapia, that had undergone either natural or acid-assisted fermentation, were quantified. The latter includes either tamarind (Tamarindus indica) pulp or dried slices of Garcinia atroviridis fruit in the fermentation process. Results showed that there are no significant differences in most of the biogenic amines including histamine, while there are significant differences in total UCA content, and trans- and cis-UCA contents between the two samples. Differences in the amino acid contents were largely fish-dependent.
    Matched MeSH terms: Amino Acids/chemistry*
  19. Chua LS, Adnan NA
    Acta Sci Pol Technol Aliment, 2014 Apr-Jun;13(2):169-79.
    PMID: 24876312
    The purpose of this study was to investigate the relationship of biochemical (enzymes) and nutritional components in the selected honey samples from Malaysia. The relationship is important to estimate the quality of honey based on the concentration of these nutritious components. Such a study is limited for honey samples from tropical countries with heavy rainfall throughout the year.
    Matched MeSH terms: Amino Acids/analysis
  20. Tan ES, Ying-Yuan N, Gan CY
    Food Chem, 2014;152:447-55.
    PMID: 24444960 DOI: 10.1016/j.foodchem.2013.12.008
    Optimisation of protein extraction yield from pinto bean was investigated using response surface methodology. The maximum protein yield of 54.8 mg/g was obtained with the optimal conditions of: temperature=25 °C, time=1 h and buffer-to-sample ratio=20 ml/g. PBPI was found to obtain high amount of essential amino acids such as leucine, lysine, and phenylalanine compared to SPI. The predominant proteins of PBPI were vicilin and phytohemagglutinins whereas the predominant proteins of SPI were glycinin and conglycinins. Significantly higher emulsifying capacity was found in PBPI (84.8%) compared to SPI (61.9%). Different isoelectric points were found in both PBPI (4.0-5.5) and SPI (4.0-5.0). Also, it was found that PBPI obtained a much higher denaturation temperature of 110.2 °C compared to SPI (92.5 °C). Other properties such as structural information, gelling capacity, water- and oil-holding capacities, emulsion stability as well as digestibility were also reported.
    Matched MeSH terms: Amino Acids/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links