Displaying all 11 publications

Abstract:
Sort:
  1. Goh NY, Mohamad Razif MF, Yap YH, Ng CL, Fung SY
    Comput Biol Chem, 2022 Feb;96:107620.
    PMID: 34971900 DOI: 10.1016/j.compbiolchem.2021.107620
    Angiotensin-converting enzyme (ACE) regulates blood pressure and has been implicated in several conditions including lung injury, fibrosis and Alzheimer's disease. Medicinal mushroom Ganordema lucidum (Reishi) cystathionine beta-synthase (GlCBS) was previously reported to possess ACE inhibitory activities. However, the inhibitory mechanism of CBS protein remains unreported. Therefore, this study integrates in silico sequencing, structural and functional based-analysis, protein modelling, molecular docking and binding affinity calculation to elucidate the inhibitory mechanism of GlCBS and Lignosus rhinocerus (Tiger milk mushroom) CBS protein (LrCBS) towards ACE. In silico analysis indicates that CBSs from both mushrooms share high similarities in terms of physical properties, structural properties and domain distribution. Protein-protein docking analysis revealed that both GlCBS and LrCBS potentially modulate the C-terminal domain of ACE (C-ACE) activity via regulation of chloride activation and/or prevention of substrate entry. GICBS and LrCBS were also shown to interact with ACE at the same region that presumably inhibits the function of ACE.
    Matched MeSH terms: Agaricales/enzymology*
  2. Phan CW, Sabaratnam V
    Appl Microbiol Biotechnol, 2012 Nov;96(4):863-73.
    PMID: 23053096 DOI: 10.1007/s00253-012-4446-9
    Mushroom industries generate a virtually in-exhaustible supply of a co-product called spent mushroom substrate (SMS). This is the unutilised substrate and the mushroom mycelium left after harvesting of mushrooms. As the mushroom industry is steadily growing, the volume of SMS generated annually is increasing. In recent years, the mushroom industry has faced challenges in storing and disposing the SMS. The obvious solution is to explore new applications of SMS. There has been considerable discussion recently about the potentials of using SMS for production of value-added products. One of them is production of lignocellulosic enzymes such as laccase, xylanase, lignin peroxidase, cellulase and hemicellulase. This paper reviews scientific research and practical applications of SMS as a readily available and cheap source of enzymes for bioremediation, animal feed and energy feedstock.
    Matched MeSH terms: Agaricales/enzymology*
  3. Ashraf Z, Rafiq M, Nadeem H, Hassan M, Afzal S, Waseem M, et al.
    PLoS One, 2017;12(5):e0178069.
    PMID: 28542395 DOI: 10.1371/journal.pone.0178069
    The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
    Matched MeSH terms: Agaricales/enzymology*
  4. Nadri MH, Salim Y, Basar N, Yahya A, Zulkifli RM
    PMID: 25371571
    BACKGROUND: The ethyl acetate and chloroform extracts of stems, leaves and fruits of Phaleria macrocarpa were screened for their antioxidant capacity and tyrosinase inhibition properties.

    MATERIAL AND METHOD: The total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric-ion reducing power (FRAP) were used to evaluate their antioxidant capacity. Tyrosinase inhibition effect was measured using mushroom tyrosinase inhibition assay.

    RESULT: Ethyl acetate extract of P. macrocarpa's stem exhibited highest total phenolic content, DPPH free radical scavenging and ferric reducing power. Meanwhile, chloroform extracts of leaves and fruits demonstrated potent anti-tyrosinase activities as compared to a well-known tyrosinase inhibitor, kojic acid.

    CONCLUSION: Since chloroform extracts of leaves and fruits have low antioxidant capacities, the tyrosinase inhibition effect observed are antioxidant independent. This study suggests direct tyrosinase inhibition by chloroform extracts of Phaleria macrocarpa.

    Matched MeSH terms: Agaricales/enzymology
  5. Bukhari SN, Jantan I, Unsal Tan O, Sher M, Naeem-Ul-Hassan M, Qin HL
    J Agric Food Chem, 2014 Jun 18;62(24):5538-47.
    PMID: 24901506 DOI: 10.1021/jf501145b
    Hyperpigmentation in human skin and enzymatic browning in fruits, which are caused by tyrosinase enzyme, are not desirable. Investigations in the discovery of tyrosinase enzyme inhibitors and search for improved cytotoxic agents continue to be an important line in drug discovery and development. In present work, a new series of 30 compounds bearing α,β-unsaturated carbonyl moiety was designed and synthesized following curcumin as model. All compounds were evaluated for their effects on human cancer cell lines and mushroom tyrosinase enzyme. Moreover, the structure-activity relationships of these compounds are also explained. Molecular modeling studies of these new compounds were carried out to explore interactions with tyrosinase enzyme. Synthetic curcumin-like compounds (2a-b) were identified as potent anticancer agents with 81-82% cytotoxicity. Five of these newly synthesized compounds (1a, 8a-b, 10a-b) emerged to be the potent inhibitors of mushroom tyrosinase, providing further insight into designing compounds useful in fields of food, health, and agriculture.
    Matched MeSH terms: Agaricales/enzymology*
  6. Pandiyan K, Tiwari R, Rana S, Arora A, Singh S, Saxena AK, et al.
    World J Microbiol Biotechnol, 2014 Jan;30(1):55-64.
    PMID: 23824667 DOI: 10.1007/s11274-013-1422-1
    The potential of Parthenium sp. as a feedstock for enzymatic saccharification was investigated by using chemical and biological pretreatment methods. Mainly chemical pretreatments (acid and alkali) were compared with biological pretreatment with lignolytic fungi Marasmiellus palmivorus PK-27. Structural and chemical changes as well as crystallinity of cellulose were examined through scanning electron microscopy, fourier transform infra red and X-ray diffraction analysis, respectively after pretreatment. Total reducing sugar released during enzymatic saccharification of pretreated substrates was also evaluated. Among the pretreatment methods, alkali (1% NaOH) treated substrate showed high recovery of acid perceptible polymerised lignin (7.53 ± 0.5 mg/g) and significantly higher amount of reducing sugar (513.1 ± 41.0 mg/gds) compared to uninoculated Parthenium (163.4 ± 21.2) after 48 h of hydrolysis. This is the first report of lignolytic enzyme production from M. palmivorus, prevalent in oil palm plantations in Malaysia and its application in biological delignification of Parthenium sp. Alkali (1% NaOH) treatment proves to be the suitable method of pretreatment for lignin recovery and enhanced yield of reducing sugar which may be used for bioethanol production from Parthenium sp.
    Matched MeSH terms: Agaricales/enzymology*
  7. Lam KW, Syahida A, Ul-Haq Z, Abdul Rahman MB, Lajis NH
    Bioorg Med Chem Lett, 2010 Jun 15;20(12):3755-9.
    PMID: 20493688 DOI: 10.1016/j.bmcl.2010.04.067
    A series of 16 oxadiazole and triazolothiadiazole derivatives were designed, synthesized and evaluated as mushroom tyrosinase inhibitors. Five derivatives were found to display high inhibition on the tyrosinase activity ranging from 0.87 to 1.49 microM. Compound 5 exhibited highest tyrosinase inhibitory activity with an IC(50) value of 0.87+/-0.16 microM. The in silico protein-ligand docking using AUTODOCK 4.1 was successfully performed on compound 5 with significant binding energy value of -5.58 kcal/mol. The docking results also showed that the tyrosinase inhibition might be due to the metal chelating effect by the presence of thione functionality in compounds 1-5. Further studies revealed that the presence of hydrophobic group such as cycloamine derivatives played a major role in the inhibition. Piperazine moiety in compound 5 appeared to be involved in an extensive hydrophobic contact and a 2.9A hydrogen bonding with residue Glu 182 in the active site.
    Matched MeSH terms: Agaricales/enzymology
  8. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Hassan M, et al.
    Bioorg Chem, 2019 05;86:459-472.
    PMID: 30772647 DOI: 10.1016/j.bioorg.2019.01.036
    The present research was designed for the selective synthesis of novel bi-heterocyclic acetamides, 9a-n, and their tyrosinase inhibition to overwhelm the problem of melanogenesis. The structures of newly synthesized compounds were confirmed by spectral techniques such as 1H NMR, 13C NMR, and EI-MS along with elemental analysis. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against tyrosinase and all these molecules were recognized as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which explored that compound, 9h, inhibited tyrosinase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0027 µM. The computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal/mol). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules can be pondered as nontoxic medicinal scaffolds for skin pigmentation and related disorders.
    Matched MeSH terms: Agaricales/enzymology
  9. Salar U, Khan KM, Jabeen A, Faheem A, Fakhri MI, Saad SM, et al.
    Bioorg Chem, 2016 12;69:37-47.
    PMID: 27669119 DOI: 10.1016/j.bioorg.2016.09.006
    Coumarin sulfonates 4-43 were synthesized by reacting 3-hydroxy coumarin 1, 4-hydroxy coumarin 2and6-hydroxy coumarin 3 with different substituted sulfonyl chlorides and subjected to evaluate for their in vitro immunomodulatory potential. The compounds were investigated for their effect on oxidative burst activity of zymosan stimulated whole blood phagocytes using a luminol enhanced chemiluminescence technique. Ibuprofen was used as standard drug (IC50=54.2±9.2μM). Eleven compounds 6 (IC50=46.60±14.6μM), 8 (IC50=11.50±6.5μM), 15 (IC50=21.40±12.2μM), 19 (IC50=5.75±0.86μM), 22 (IC50=10.27±1.06μM), 23 (IC50=33.09±5.61μM), 24 (IC50=4.93±0.58μM), 25 (IC50=21.96±14.74μM), 29 (IC50=12.47±9.2μM), 35 (IC50=20.20±13.4μM) and 37 (IC50=14.47±5.02μM) out of forty demonstrated their potential suppressive effect on production of reactive oxygen species (ROS) as compared to ibuprofen. All the synthetic derivatives 4-43 were characterized by different available spectroscopic techniques such as 1H NMR, 13C NMR, EIMS and HRMS. CHN analysis was also performed.
    Matched MeSH terms: Agaricales/enzymology
  10. Quah CC, Kim KH, Lau MS, Kim WR, Cheah SH, Gundamaraju R
    PMID: 25392585
    BACKGROUND: The preference for a fairer skin-tone has become a common trend among both men and women around the world. In this study, seaweeds Sargassum polycystum and Padina tenuis were investigated for their in vitro and in vivo potentials in working as skin whitening agents. Seaweed has been used as a revolutionary skin repairing agent in both traditional and modern preparations. The high antioxidant content is one of the prime reasons for its potent action. It has been employed in traditional Chinese and Japanese medicine. For centuries, most medical practitioners in the Asian cultures have known seaweed as an organic source of vitamins, minerals, fatty acids like omega-3 and omega-6 and antioxidants. The present objective of the study was to evaluate the potent dermal protective effect of the two seaweeds Sargassum polycystum and Padina tenuis on human cell lines and guinea pigs.

    MATERIAL AND METHODS: Seaweeds were extracted with ethanol and further fractionated with hexane, ethyl acetate and water. The extracts were tested for mushroom tyrosinase inhibitory activity, cytotoxicity in human epidermal melanocyte (HEM), and Chang cells. Extracts with potent melanocytotoxicity were formulated into cosmetic cream and tested on guinea pigs in dermal irritation tests and de-pigmentation assessments.

    RESULTS: Both Sargassum polycystum and Padina tenuis seaweeds showed significant inhibitory effect on mushroom tyrosinase in the concentration tested. SPEt showed most potent cytotoxicity on HEM (IC50 of 36µg/ml), followed by SPHF (65µg/ml), and PTHF (78.5µg/ml). SPHF and SPEt reduced melanin content in skin of guinea pigs when assessed histologically.

    CONCLUSION: SPEt, SPHF and PTHF were able to inhibit HEM proliferation in vitro, with SPHF being most potent and did not cause any dermal irritation in guinea pigs. The results obtained indicate that SPHF is a promising pharmacological or cosmetic agent.

    Matched MeSH terms: Agaricales/enzymology
  11. Izwan Mohd Lazim M, Safinar Ismail I, Shaari K, Abd Latip J, Ali Al-Mekhlafi N, Morita H
    Chem Biodivers, 2013 Sep;10(9):1589-96.
    PMID: 24078592 DOI: 10.1002/cbdv.201200391
    A chemical investigation of the alkaloidal fraction of Dysoxylum acutangulum leaves led to the isolation and characterization of two new chromone alkaloid analogs named chrotacumines E and F (1 and 2, resp.). Structure elucidation of 1 and 2 was achieved by spectroscopic analyses, including 2D-NMR. Both of these alkaloids exhibited modest activities as tyrosinase inhibitors with 29.2 and 25.8% inhibition at 100 μg/ml, respectively.
    Matched MeSH terms: Agaricales/enzymology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links