Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291.
The Japanese or Honshū wolf was one the most distinct gray wolf subspecies due to its small stature and endemicity to the islands of Honshū, Shikoku, and Kyūshū. Long revered as a guardian of farmers and travellers, it was persecuted from the 17th century following a rabies epidemic, which led to its extinction in the early 20th century. To better understand its evolutionary history, we sequenced the nuclear genome of a 19th century Honshū wolf specimen to an average depth of coverage of 3.7✕. We find Honshū wolves were closely related to a lineage of Siberian wolves that were previously believed to have gone extinct in the Late Pleistocene, thereby extending the survival of this ancient lineage until the early 20th century. We also detected significant gene flow between Japanese dogs and the Honshū wolf, corroborating previous reports on Honshū wolf dog interbreeding.
The narwhal (Monodon monoceros) is a highly specialized endemic Arctic cetacean, restricted to the Arctic seas bordering the North Atlantic. Low levels of genetic diversity have been observed across several narwhal populations using mitochondrial DNA and microsatellites. Despite this, the global abundance of narwhals was recently estimated at ∼170,000 individuals. However, the species is still considered vulnerable to changing climates due to its high specialization and restricted Arctic distribution. We assembled and annotated a genome from a narwhal from West Greenland. We find relatively low diversity at the genomic scale and show that this did not arise by recent inbreeding, but rather has been stable over an extended evolutionary timescale. We also find that the current large global abundance most likely reflects a recent rapid expansion from a much smaller founding population.
To robustly assess the antibacterial mechanisms of nanotopographies, it is critical to analyze the bacteria-nanotopography adhesion interface. Here, we utilize focused ion beam milling combined with scanning electron microscopy to generate three-dimensional reconstructions of Staphylococcus aureus or Escherichia coli interacting with nanotopographies. For the first time, 3D morphometric analysis has been exploited to quantify the intrinsic contact area between each nanostructure and the bacterial envelope, providing an objective framework from which to derive the possible antibacterial mechanisms of synthetic nanotopographies. Surfaces with nanostructure densities between 36 and 58 per μm2 and tip diameters between 27 and 50 nm mediated envelope deformation and penetration, while surfaces with higher nanostructure densities (137 per μm2) induced envelope penetration and mechanical rupture, leading to marked reductions in cell volume due to cytosolic leakage. On nanotopographies with densities of 8 per μm2 and tip diameters greater than 100 nm, bacteria predominantly adhered between nanostructures, resulting in cell impedance.
The evolution of the genera Bos and Bison, and the nature of gene flow between wild and domestic species, is poorly understood, with genomic data of wild species being limited. We generated two genomes from the likely extinct kouprey (Bos sauveli) and analyzed them alongside other Bos and Bison genomes. We found that B. sauveli possessed genomic signatures characteristic of an independent species closely related to Bos javanicus and Bos gaurus. We found evidence for extensive incomplete lineage sorting across the three species, consistent with a polytomic diversification of the major ancestry in the group, potentially followed by secondary gene flow. Finally, we detected significant gene flow from an unsampled Asian Bos-like source into East Asian zebu cattle, demonstrating both that the full genomic diversity and evolutionary history of the Bos complex has yet to be elucidated and that museum specimens and ancient DNA are valuable resources to do so.
Unique performance of the hybrid organic-inorganic halide perovskites (HOIPs) has attracted great attention because of their continuous exploration and breakthrough in a multitude of energy-related applications. However, the instability and lead-induced toxicity that arise in bulk perovskites are the two major challenges that impede their future commercialization process. To find a solution, a series of two-dimensional HOIPs (2D HOIPs) are investigated to prolong the device lifetime with highly efficient photoelectric conversion and energy storage. Herein, the recent advances of 2D HOIPs and their structural derivatives for the energy realms are summarized and discussed. The basic understanding of crystal structures, physicochemical properties, and growth mechanisms is presented. In addition, the current challenges and future directions to provide a roadmap for the development of next generation 2D HOIPs are prospected.
Neighborhoods have received worldwide interest in sustainability assessment due to their suitable scale for representing the relationship between the individual and the city. Consequently, this has led to a focus on developing neighborhood sustainability assessment (NSA) systems and, thereby, studying the prominent NSA tools. Alternatively, this study aims to uncover formative concepts shaping the assessment of sustainable neighborhoods based on a systematic review of the empirical work by researchers. The study included a Scopus database search for papers measuring neighborhood sustainability and a literature review of 64 journal articles published between 2019 and 2021. Our results suggest that criteria related to sustainable form and morphology are the most widely measured criteria in the reviewed papers, interconnected with multiple aspects of neighborhood sustainability. The paper contributes to expanding the existing knowledge on neighborhood sustainability evaluation, further adding to the literature on designing sustainable cities and communities and achieving Sustainable Development Goal 11.
Arctic environments are changing rapidly and if we are to understand the resilience of species to future changes, we need to investigate alterations in their life histories. Egg size and egg shape are key life-history traits, reflecting parental investment as well as influencing future reproductive success. Here we focus on egg characteristics in two Arctic shorebirds, the Dunlin (Calidris alpina) and the Temminck's stint (Calidris temminckii). Using egg photos that encompass their full breeding ranges, we show that egg characteristics exhibit significant longitudinal variations, and the variation in the monogamous species (Dunlin) is significantly greater than the polygamous species (Temminck's stint). Our finding is consistent with the recent "disperse-to-mate" hypothesis which asserts that polygamous species disperse further to find mates than monogamous species, and by doing so they create panmictic populations. Taken together, Arctic shorebirds offer excellent opportunities to understand evolutionary patterns in life history traits.
The polycrystalline SrFe12O19 samples deeply substituted up to at.67% by Al3+, Ga3+, In3+, Co3+, and Cr3+ cations with a high configurational mixing entropy were prepared by solid-phase synthesis. Phase purity and unit cell parameters were obtained from XRD and analyzed versus the average ionic radius of the iron sublattice. The crystallite size varied around ∼4.5 μm. A comprehensive study of the magnetization was realized in various fields and temperatures. The saturation magnetization was calculated using the Law of Approach to Saturation. The accompanying magnetic parameters were determined. The magnetic crystallographic anisotropy coefficient and the anisotropy field were calculated. All investigated magnetization curves turned out to be nonmonotonic. The magnetic ordering and freezing temperatures were extracted from the ZFC and FC curves. The average size of magnetic clusters varied around ∼350 nm. The high values of the configurational mixing entropy and the phenomenon of magnetic dilution were taken into account.
Anatomical structure of mummified wood of Cryptocarya (Lauraceae) from the Upper Pleistocene of Maoming, South China and the woods of 15 extant species of Cryptocarya from China and Malaysia were examined. The fossil wood has been convincingly attributed to extant species Cryptocarya chinensis (Hance) Hemsl. This is the first reliable fossil record of Cryptocarya in Asia. The finding combined with the results of Biomod2 species distribution modeling suggest that the range of C. chinensis in the Late Pleistocene in South China and North Vietnam was very restricted due to increased continental aridity and enhanced temperature seasonality in this region. Thus, modern populations of C. chinensis in Maoming can be considered as glacial relicts. The mines (larval tunnels) produced by the larvae of flies from the genus Phytobia Lioy (Agromyzidae, Diptera) were observed in fossil wood under study. These cambial miners have never been reported in Cryptocarya.
The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters.
As global demand for natural resources escalates, the environmental impact stemming from resource extraction has risen to the forefront of contemporary discussions. This paper probed the potential of using vegetation cover as an ecological barometer to gauge the level of environmental damage and restoration in mining areas: a decline in vegetation cover may signify detrimental impacts from intense mining activities, while an increase may indicate effective local environmental stewardship. Therefore, this paper undertook an assessment and discussion of mining damage and environmental management at China's Ta'ershan Mining Area since 2007, calculating and visualizing FVC (Fractional Vegetation Cover) of the Ta'ershan Mining Area to track changes in vegetation cover between 2007 and 2021. Changes in vegetation cover in the Ta'ershan Mining Area could act as a reflection of both mining-induced damage and subsequent successful environmental management by local authorities, providing a practical way to evaluate ecological effects in resource development.
The highest plateau on Earth, Qinghai-Tibet Plateau, contains thousands of lakes with broad salinity and diverse and unique microbial communities. However, little is known about their co-occurring viruses. Herein, we identify 4,560 viral Operational Taxonomic Units (vOTUs) from six viromes of three saline lakes on Qinghai-Tibet Plateau, with less than 1% that could be classified. Most of the predicted vOTUs were associated with the dominant bacterial and archaeal phyla. Virus-encoded auxiliary metabolic genes suggest that viruses influence microbial metabolisms of carbon, nitrogen, sulfur, and lipid; the antibiotic resistance mediation; and their salinity adaption. The six viromes clustered together with the ice core viromes and bathypelagic ocean viromes and might represent a new viral habitat. This study has revealed the unique characteristics and potential ecological roles of DNA viromes in the lakes of the highest plateau and established a foundation for the recognition of the viral roles in plateau lake ecosystems.
Energy reserves, primarily stored in the insect's fat body, are essential for physiological processes such as reproduction and cocoon formation. However, whether these processes are mutually constraining is unknown. Here, we showed that cocoon-free silkworms accumulate amino acid constituents of silk proteins in the hemolymph and maintain lipid and sugar reserves in the pupal fat body by repressing the expression of sericin and fibroin genes in the middle and posterior silk glands, respectively, via butterfly pierisin-1A catalytic domain expression. This, in turn, upregulates insulin/insulin-like signaling and target of rapamycin (IIS/TOR) signaling, which enhances vitellogenesis and accelerates ovarian development, thus contributing to increased fecundity. The impacts of semi-starvation on fecundity and egg hatchability were also less pronounced in cocoon-free silkworms compared with wildtype silkworms. These data uncover the resource allocation trade-off between cocoon formation and fecundity and demonstrate that nutritional signaling plays a role in regulating silkworm reproduction.
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Nanosensors have gained significant attention in recent years for improving energy conversion and storage performance in solar cells. These nanosensors, typically made from nanoparticles or nanowires, can be embedded within the solar cell to monitor parameters like temperature and light intensity. By monitoring these parameters, nanosensors provide real-time feedback and control to optimize the efficiency and performance of the solar cell. They also play a role in detecting potential issues, such as defects, for proactive maintenance and troubleshooting. The integration of nanosensors in solar cells enables the development of smart energy systems, leading to increased power output, improved stability, and a longer lifespan of solar cells. The deployment of nanosensors in solar cells offer promising trajectory for advancing energy conversion, utilization, and storage capabilities. This review summarizes recent advances in nanosensors in solar cells, with a focus on the role they play in enhancing energy conversion, utilization, and storage performance.
The successful commercialization of algal biophotovoltaics (BPV) technology hinges upon a multifaceted approach, encompassing factors such as the development of a cost-efficient and highly conductive anode material. To address this issue, we developed an environmentally benign method of producing reduced graphene oxide (rGO), using concentrated Chlorella sp. UMACC 313 suspensions as the reducing agent. The produced rGO was subsequently coated on the carbon paper (rGO-CP) and used as the BPV device's anode. As a result, maximum power density was increased by 950% for Chlorella sp. UMACC 258 (0.210 mW m-2) and 781% for Synechococcus sp. UMACC 371 (0.555 mW m-2) compared to bare CP. The improved microalgae adhesion to the anode and improved electrical conductivity of rGO brought on by the effective removal of oxygen functional groups may be the causes of this. This study has demonstrated how microalgal-reduced GO may improve the efficiency of algal BPV for producing bioelectricity.
Partial replacement of resident Aedes aegypti mosquitoes with introduced mosquitoes carrying certain strains of inherited Wolbachia symbionts can result in transmission blocking of dengue and other viruses of public health importance. Wolbachia strain wAlbB is an effective transmission blocker and stable at high temperatures, making it particularly suitable for hot tropical climates. Following trial field releases in Malaysia, releases using wAlbB Ae. aegypti have become operationalized by the Malaysian health authorities. We report here on an average reduction in dengue fever of 62.4% (confidence intervals 50-71%) in 20 releases sites when compared to 76 control sites in high-rise residential areas. Importantly the level of dengue reduction increased with Wolbachia frequency, with 75.8% reduction (61-87%) estimated at 100% Wolbachia frequency. These findings indicate large impacts of wAlbB Wolbachia invasions on dengue fever incidence in an operational setting, with incidence expected to further decrease as wider areas are invaded.
Hanging Coffin is a unique and ancient burial custom that has been practiced in southern China, Southeast Asia, and near Oceania regions for more than 3,000 years. Here, we conducted mitochondrial whole-genome analyses of 41 human remains sampled from 13 Hanging Coffin sites in southern China and northern Thailand, which were dated between ∼2,500 and 660 years before present. We found that there were genetic connections between the Hanging Coffin people living in different geographic regions. Notably, the matrilineal genetic diversity of the Hanging Coffin people from southern China is much higher than those from northern Thailand, consistent with the hypothesized single origin of the Hanging Coffin custom in southern China about 3,600 years ago, followed by its dispersal in southern China through demic diffusion, whereas the major dispersal pattern in Southeast Asia is cultural assimilation in the past 2,000 years.
Urban flooding significantly impacts city planning and resident safety. Traditional flood risk models, divided into physical and data-driven types, face challenges like data requirements and limited scalability. To overcome these, this study developed a model combining graph convolutional network (GCN) and spiking neural network (SNN), enabling the extraction of both spatial and temporal features from diverse data sources. We built a comprehensive flood risk dataset by integrating social media reports with weather and geographical data from six Chinese cities. The proposed Graph SNN model demonstrated superior performance compared to GCN and LSTM models, achieving high accuracy (85.3%), precision (0.811), recall (0.832), and F1 score (0.821). It also exhibited higher energy efficiency, making it scalable for real-time flood prediction in various urban environments. This research advances flood risk assessment by efficiently processing heterogeneous data while reducing energy consumption, offering a sustainable solution for urban flood management.