AIM: To comprehensively compare the effects of MenSC and umbilical cord-derived MSC (UcMSC) transplantation on T1D treatment, to further explore the potential mechanism of MSC-based therapies in T1D, and to provide support for the clinical application of MSC in diabetes treatment.
METHODS: A conventional streptozotocin-induced T1D mouse model was established, and the effects of MenSC and UcMSC transplantation on their blood glucose and serum insulin levels were detected. The morphological and functional changes in the pancreas, liver, kidney, and spleen were analyzed by routine histological and immunohistochemical examinations. Changes in the serum cytokine levels in the model mice were assessed by protein arrays. The expression of target proteins related to pancreatic regeneration and apoptosis was examined by western blot.
RESULTS: MenSC and UcMSC transplantation significantly improved the blood glucose and serum insulin levels in T1D model mice. Immunofluorescence analysis revealed that the numbers of insulin+ and CD31+ cells in the pancreas were significantly increased in MSC-treated mice compared with control mice. Subsequent western blot analysis also showed that vascular endothelial growth factor (VEGF), Bcl2, Bcl-xL and Proliferating cell nuclear antigen in pancreatic tissue was significantly upregulated in MSC-treated mice compared with control mice. Additionally, protein arrays indicated that MenSC and UcMSC transplantation significantly downregulated the serum levels of interferon γ and tumor necrosis factor α and upregulated the serum levels of interleukin-6 and VEGF in the model mice. Additionally, histological and immunohistochemical analyses revealed that MSC transplantation systematically improved the morphologies and functions of the liver, kidney, and spleen in T1D model mice.
CONCLUSION: MenSC transplantation significantly improves the symptoms in T1D model mice and exerts protective effects on their main organs. Moreover, MSC-mediated angiogenesis, antiapoptotic effects and immunomodulation likely contribute to the above improvements. Thus, MenSC are expected to become promising seeding cells for clinical diabetes treatment due to their advantages mentioned above.
AIM: To discuss state-of-the-art functional biomaterials that could enhance the therapeutic potential of stem cell-based treatment for ischemic stroke and provide detailed insights into the mechanisms underlying these biomaterial approaches.
METHODS: The PubMed, Science Direct and Scopus literature databases were searched using the keywords of "biomaterial" and "ischemic stroke". All topically-relevant articles were then screened to identify those with focused relevance to in vivo, in vitro and clinical studies related to "stem cells" OR "progenitor cells" OR "undifferentiated cells" published in English during the years of 2011 to 2022. The systematic search was conducted up to September 30, 2022.
RESULTS: A total of 19 articles matched all the inclusion criteria. The data contained within this collection of papers comprehensively represented 19 types of biomaterials applied on seven different types of stem/progenitor cells, namely mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, neural progenitor cells, endothelial progenitor cells, neuroepithelial progenitor cells, and neuroblasts. The potential major benefits gained from the application of biomaterials in stem cell-based therapy were noted as induction of structural and functional modifications, increased stem cell retention rate in the hostile ischemic microenvironment, and promoting the secretion of important cytokines for reparative mechanisms.
CONCLUSION: Biomaterials have a relatively high potential for enhancing stem cell therapy. Nonetheless, there is a scarcity of evidence from human clinical studies for the efficacy of this bioengineered cell therapy, highlighting that it is still too early to draw a definitive conclusion on efficacy and safety for patient usage. Future in-depth clinical investigations are necessary to realize translation of this therapy into a more conscientious and judicious evidence-based therapy for clinical application.
AIM: To establish a simplified and efficient method for culture and identification of neonatal rat brain-derived NSCs.
METHODS: First, curved tip operating scissors were used to dissect brain tissues from new born rats (2 to 3 d) and the brain tissues were cut into approximately 1 mm3 sections. Filter the single cell suspension through a nylon mesh (200-mesh) and culture the sections in suspensions. Passaging was conducted with TrypLTM Express combined with mechanical tapping and pipetting techniques. Second, identify the 5th generation of passaged NSCs as well as the revived NSCs from cryopreservation. BrdU incorporation method was used to detect self-renew and proliferation capabilities of cells. Different NSCs specific antibodies (anti-nestin, NF200, NSE and GFAP antibodies) were used to identify NSCs specific surface markers and muti-differentiation capabilities by immunofluorescence staining.
RESULTS: Brain derived cells from newborn rats (2 to 3 d) proliferate and aggregate into spherical-shaped clusters with sustained continuous and stable passaging. When BrdU was incorporated into the 5th generation of passaged cells, positive BrdU cells and nestin cells were observed by immunofluorescence staining. After induction of dissociation using 5% fetal bovine serum, positive NF200, NSE and GFAP cells were observed by immunofluorescence staining.
CONCLUSION: This is a simplified and efficient method for neonatal rat brain-derived neural stem cell culture and identification.