In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
Relatively few cases of myocardial infarction associated with coronary artery atherosclerosis have been described previously in macaques. In this study the authors report the prevalence and characteristics of coronary artery atherosclerosis and myocardial infarction in 10 rhesus (Macaca mulatta) and two cynomolgus (Macaca fascicularis) macaques that were fed atherogenic diets for 16 months or longer. Our findings show clearly that myocardial infarction occurs in macaques with diet-induced atherosclerosis. The frequency seems to be related to the species, composition of the atherogenic diet, and length of time fed the atherogenic diet. The myocardial lesions are remarkably similar to those described in human beings in terms of location and gross and microscopic characteristics. The characteristics of coronary artery atherosclerosis, including the occurrence of thrombosis, severe stenosis, mineralization, atheronecrosis, and sterol clefts, especially in animals fed the atherogenic diets for longer periods of time, also closely resemble those of the arterial lesions found in human beings. The greatest prevalence of myocardial infarcts was found in rhesus monkeys fed a cholesterol-containing diet with 40% of calories supplied by peanut oil and in cynomolgus macaques from Malaya that were fed the same amount of cholesterol with 40% of calories from lard. Electrocardiographic abnormalities as well as the occurrence of unexpected and relatively sudden death in several of these nonhuman primates are also consistent with signs frequently observed in human beings.
Enterovirus 71 (EV71; family Picornaviridae, species human Enterovirus A) usually causes hand, foot, and mouth disease, which may rarely be complicated by fatal encephalomyelitis. We investigated extra-central nervous system (extra-CNS) tissues capable of supporting EV71 infection and replication, and have correlated tissue infection with expression of putative viral entry receptors, scavenger receptor B2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL-1). Formalin-fixed, paraffin-embedded CNS and extra-CNS tissues from seven autopsy cases were examined by IHC and in situ hybridization to evaluate viral antigens and RNA. Viral receptors were identified with IHC. In all seven cases, the CNS showed stereotypical distribution of inflammation and neuronal localization of viral antigens and RNA, confirming the clinical diagnosis of EV71 encephalomyelitis. In six cases in which tonsillar tissues were available, viral antigens and/or RNA were localized to squamous epithelium lining the tonsillar crypts. Tissues from the gastrointestinal tract, pancreas, mesenteric nodes, spleen, and skin were all negative for viral antigens/RNA. Our novel findings strongly suggest that tonsillar crypt squamous epithelium supports active viral replication and represents an important source of viral shedding that facilitates person-to-person transmission by both the fecal-oral or oral-oral routes. It may also be a portal for viral entry. A correlation between viral infection and SCARB2 expression appears to be more significant than for PSGL-1 expression.
A predominantly pig-to-human zoonotic infection caused by the novel Nipah virus emerged recently to cause severe morbidity and mortality in both animals and man. Human autopsy studies showed the pathogenesis to be related to systemic vasculitis that led to widespread thrombotic occlusion and microinfarction in most major organs especially in the central nervous system. There was also evidence of extravascular parenchymal infection, particularly near damaged vessels (Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR, Nipah Virus Pathology Working Group: Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002, 161:2153-2167). We describe here a golden hamster (Mesocricetus auratus) model that appears to reproduce the pathology and pathogenesis of acute human Nipah infection. Hamsters infected by intranasal or intraperitoneal routes died within 9 to 29 days or 5 to 9 days, respectively. Pathological lesions were most severe and extensive in the hamster brain. Vasculitis, thrombosis, and more rarely, multinucleated endothelial syncytia, were found in blood vessels of multiple organs. Viral antigen and RNA were localized in both vascular and extravascular tissues including neurons, lung, kidney, and spleen, as demonstrated by immunohistochemistry and in situ hybridization, respectively. Paramyxoviral-type nucleocapsids were identified in neurons and in vessel walls. At the terminal stage of infection, virus and/or viral RNA could be recovered from most solid organs and urine, but not from serum. The golden hamster is proposed as a suitable model for further studies including pathogenesis studies, anti-viral drug testing, and vaccine development against acute Nipah infection.
Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.