Displaying all 4 publications

Abstract:
Sort:
  1. Sukri A, Noorizhab MNF, Teh LK, Salleh MZ
    Mitochondrion, 2022 01;62:74-84.
    PMID: 34748985 DOI: 10.1016/j.mito.2021.10.010
    Orang Asli are the oldest inhabitants in Peninsular Malaysia that forms as a national minority while the Malays are the majority. The study aimed to screen the mitochondrial genomes of the Orang Asli and the Malays to discover the disease-associated variants. A total of 99 Orang Asli from six tribes (Bateq, Cheq Wong, Orang Kanaq, Kensiu, Lanoh, and Semai) were recruited. Mitochondrial genome sequencing was conducted using a next-generation sequencing platform. Furthermore, we retrieved mitochondrial DNA sequences from the Malays for comparison. The clinical significance, pathogenicity prediction and frequency of variants were determined using online tools. Variants associated with mitochondrial diseases were detected in the 2 populations. A high frequency of variants associated with mitochondrial diseases, breast cancer, prostate cancer, and cervical cancer were detected in the Orang Asli and modern Malays. As medicine evolves to adopt prediction and prevention of diseases, this study highlights the need for intervention to adopt genomics medicine to strategise better healthcare management as a way forward for Precision Health.
  2. Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, et al.
    Mitochondrion, 2022 Nov;67:15-37.
    PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003
    Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
  3. Bahbahani H, Al-Zoubi S, Ali F, Afana A, Dashti M, Al-Ateeqi A, et al.
    Mitochondrion, 2023 Mar;69:36-42.
    PMID: 36690316 DOI: 10.1016/j.mito.2023.01.004
    The two species of the Old World Camelini tribe, dromedary and Bactrian camels, show superior adaptability to the different environmental conditions they populate, e.g. desert, mountains and coastal areas, which might be associated with adaptive variations on their mitochondrial DNA. Here, we investigate signatures of natural selection in the 13-mitochondrial protein-coding genes of different dromedary camel populations from the Arabian Peninsula, Africa and southwest Asia. The full mitogenome sequences of 42 dromedaries, 38 domestic Bactrian, 29 wild Bactrian camels and 31 samples representing the New World Lamini tribe reveal species-wise genetic distinction among Camelidae family species, with no evidence of geographic distinction among dromedary camels. We observe gene-wide signals of adaptive divergence between the Old World and New World camels, with evidence of purifying selection among Old World camel species. Upon comparing the different Camelidae tribes, 27 amino acid substitutions across ten mtDNA protein-coding genes were found to be under positive selection, in which, 24 codons were defined to be under positive adaptive divergence between Old World and New World camels. Seven codons belonging to three genes demonstrated positive selection in dromedary lineage. A total of 89 codons were found to be under positive selection in Camelidae family based on investigating the impact of amino acid replacement on the physiochemical properties of proteins, including equilibrium constant and surrounding hydrophobicity. These mtDNA variants under positive selection in the Camelidae family might be associated with their adaptation to their contrasting environments.
  4. Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Dadarao Chakole R, et al.
    Mitochondrion, 2023 Jul;71:83-92.
    PMID: 37269968 DOI: 10.1016/j.mito.2023.05.007
    Misfolded proteins in the central nervous system can induce oxidative damage, which can contribute to neurodegenerative diseases in the mitochondria. Neurodegenerative patients face early mitochondrial dysfunction, impacting energy utilization. Amyloid-ß and tau problems both have an effect on mitochondria, which leads to mitochondrial malfunction and, ultimately, the onset of Alzheimer's disease. Cellular oxygen interaction yields reactive oxygen species within mitochondria, initiating oxidative damage to mitochondrial constituents. Parkinson's disease, linked to oxidative stress, α-synuclein aggregation, and inflammation, results from reduced brain mitochondria activity. Mitochondrial dynamics profoundly influence cellular apoptosis via distinct causative mechanisms. The condition known as Huntington's disease is characterized by an expansion of polyglutamine, primarily impactingthe cerebral cortex and striatum. Research has identified mitochondrial failure as an early pathogenic mechanism contributing to HD's selective neurodegeneration. The mitochondria are organelles that exhibit dynamism by undergoing fragmentation and fusion processes to attain optimal bioenergetic efficiency. They can also be transported along microtubules and regulateintracellular calcium homeostasis through their interaction with the endoplasmic reticulum. Additionally, the mitochondria produce free radicals. The functions of eukaryotic cells, particularly in neurons, have significantly deviated from the traditionally assigned role of cellular energy production. Most of them areimpaired in HD, which may lead to neuronal dysfunction before symptoms manifest. This article summarizes the most important changes in mitochondrial dynamics that come from neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and Amyotrophic Lateral Sclerosis. Finally, we discussed about novel techniques that can potentially treat mitochondrial malfunction and oxidative stress in four most dominating neuro disorders.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links