Metal ions are one of the essential elements which are extensively involved in many cellular activities. With rapid advancements in genome sequencing techniques, bioinformatics approaches have provided a promising way to extract functional information of a protein directly from its primary structure. Recent findings have suggested that the metal content of an organism can be predicted from its complete genome sequences. Characterizing the biological metal usage of cold-adapted organisms may help to outline a comprehensive understanding of the metal-partnerships between the psychrophile and its adjacent environment. The focus of this study is targeted towards the analysis of the metal composition of a psychrophilic yeast Glaciozyma antarctica PI12 isolated from sea ice of Antarctica. Since the cellular metal content of an organism is usually reflected in the expressed metal-binding proteins, the putative metal-binding sequences from G. antarctica PI12 were identified with respect to their sequence homologies, domain compositions, protein families and cellular distribution. Most of the analyses revealed that the proteome was enriched with zinc, and the content of metal decreased in the order of Zn > Fe > Mg > Mn, Ca > Cu. Upon comparison, it was found that the metal compositions among yeasts were almost identical. These observations suggested that G. antarctica PI12 could have inherited a conserved trend of metal usage similar to modern eukaryotes, despite its geographically isolated habitat.
Copper compounds can be alternatives to platinum-based anticancer drugs. This study investigated the effects of a series of ternary copper(II) complexes, [Cu(phen)(aa)(H2O)]NO3·xH2O 1-4 (phen = 1,10-phenanthroline; aa = gly (1), DL-ala (2), sar (3), C-dmg (4)), on metastatic and cisplatin-resistant MDA-MB-231 breast cancer cells and MCF10A non-cancerous breast cells, and some aspects of the mechanisms. These complexes were distinctively more antiproliferative towards and induced greater apoptotic cell death in MDA-MB-231 than in MCF10A cells. 2 and 4 could induce cell cycle arrest only in cancer cells. Further evidence from DCFH-DA assay showed higher induction of reactive oxygen species (ROS) in treated cancer cells but minimal ROS increase in normal cells. DNA double-strand breaks, via a γ-H2AX assay, were only detected in cancer cells treated with 5 μM of the complexes. These complexes poorly inhibited chymotrypsin-like activity in the 20S rabbit proteasome while they did not inhibit the three proteolytic sites of MDA-MB-231 cells at 10 μM. However, the complexes could inhibit degradation of ubiquinated proteins of MDA-MB-231 cells. In addition, compound 4 was found to be effective against cervical (Hela), ovarian (SKOV3), lung (A549, PC9), NPC (Hone1, HK1, C666-1), breast (MCF7, T47D), lymphoma and leukemia (Nalmawa, HL60) and colorectal (SW480, SW48, HCT118) cancer cell lines with IC50 values (24 h) in the 1.7-19.0 μM range. Single dose NCI60 screening of 4 showed the complex to be highly cytotoxic to most cancer cell types and more effective than cisplatin.
Unsymmetrically substituted sterically tuned Pd(II)–NHC complexes of the general formula [PdCl2(NHC)2] (NHC = 1-allyl-3-methylimidazolin-2-ylidene, 7; 1-allyl-3-butylimidazol-2-ylidene, 8; 1-benzyl-3-butyl imidazolin-2-ylidene, 9) were prepared through transmetallation from their corresponding Ag(I)–NHC complexes. The Pd complexes were structurally characterized by different spectroscopic and X-ray diffraction methods. Complexes 7 and 9 adopted a trans–anti arrangement of the NHC ligands, whereas complex 8 adopted a cis–syn arrangement. Preliminary antibiogram studies using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria showed that Ag(I)–NHC complexes demonstrate higher activity compared with Pd(I)–NHC complexes. Furthermore, Pd(II)–NHC complexes were evaluated for their anticancer potential using the human colorectal cancer cell line. A higher anticancer activity was observed for complexes 8 and 9, with 26.5 and 6.6 mM IC50 values, respectively.
Arsenicosis, a syndrome caused by ingestion of arsenic contaminated drinking water, currently affects millions of people in South-East Asia and elsewhere. Previous animal studies revealed that the toxicity of arsenite essentially can be abolished if selenium is co-administered as selenite. Although subsequent studies have provided some insight into the biomolecular basis of this striking antagonism, many details of the biochemical pathways that ultimately result in the detoxification and excretion of arsenic using selenium supplements have yet to be thoroughly studied. To this end and in conjunction with the recent Phase III clinical trial "Selenium in the Treatment of Arsenic Toxicity and Cancers", we have applied synchrotron X-ray techniques to elucidate the mechanisms of this arsenic-selenium antagonism at the tissue and organ levels using an animal model. X-ray fluorescence imaging (XFI) of cryo-dried whole-body sections of laboratory hamsters that had been injected with arsenite, selenite, or both chemical species, provided insight into the distribution of both metalloids 30 minutes after treatment. Co-treated animals showed strong co-localization of arsenic and selenium in the liver, gall bladder and small intestine. X-ray absorption spectroscopy (XAS) of freshly frozen organs of co-treated animals revealed the presence in liver tissues of the seleno bis-(S-glutathionyl) arsinium ion, which was rapidly excreted via bile into the intestinal tract. These results firmly support the previously postulated hepatobiliary excretion of the seleno bis-(S-glutathionyl) arsinium ion by providing the first data pertaining to organs of whole animals.
Globally, the majority of Ni hyperaccumulator plants occur on ultramafic soils in tropical regions, and the genus Phyllanthus, from the Phyllanthaceae family, is globally the most represented taxonomical group. Two species from Sabah (Malaysia) are remarkable because Phyllanthus balgooyi can attain >16 wt% of Ni in its phloem exudate, while Phyllanthus rufuschaneyi reaches foliar concentrations of up to 3.5 wt% Ni, which are amongst the most extreme concentrations of Ni in any plant tissue. Synchrotron X-ray fluorescence microscopy, nuclear microbe (micro-PIXE+BS) and (cryo) scanning electron microscopy with energy dispersive spectroscopy were used to spatially resolve the elemental distribution in the plant organs of P. balgooyi and P. rufuschaneyi. The results show that P. balgooyi has extraordinary enrichment of Ni in the (secondary) veins of the leaves, whereas in contrast, in P. rufuschaneyi Ni occurs in interveinal areas. In the roots and stems, Ni is localized mainly in the cortex and phloem but is much lower in the xylem. The findings of this study show that, even within the same genus, the distribution of nickel and other elements, and inferred processes involved with metal hyperaccumulation, can differ substantially between species.