A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artemether (ARM), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARM and DQHS were analysed using a Lichrocart/Lichrosphere 100 CN stainless-steel column and a mobile phase of acetonitrile-0.05 M acetic acid (15:85, v/v) adjusted to pH 5.0, and electrochemical detection in the reductive mode. The mean recovery of ARM and DQHS over a concentration range of 30-120 ng/ml was 81.6% and 93.4%, respectively. The within-day coefficients of variation were 0.89-7.01% for ARM and 3.45-8.11% for DQHS. The day-to-day coefficients of variation were 2.06-8.43% and 3.22-6.33%, respectively. The minimum detectable concentration for ARM and DQHS in plasma was 2.5 and 1.25 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.
A rapid and selective high-performance liquid chromatographic assay for determination of a new antimalarial drug (benflumetol, BFL) is described. After extraction with hexane-diethyl ether (70:30, v/v) from plasma, BFL was analysed using a C18 Partisil 10 ODS-3 reversed-phase stainless steel column and a mobile phase of acetonitrile-0.1 M ammonium acetate (90:10, v/v) adjusted to pH 4.9 with ultraviolet detection at 335 nm. The mean recovery of BFL over a concentration range of 50-400 ng/ml was 96.8 +/- 5.2%. The within-day and day-to-day coefficients of variation were 1.8-4.0 and 1.8-4.2%, respectively. The minimum detectable concentration in plasma for BFL was 5 ng/ml with a C.V. of less than 10%. This method was found to be suitable for clinical pharmacokinetic studies.
An ethanolic extract of cloves was analyzed by gas chromatography directly to identify eugenol and other major phenolic compounds without previous separation of other components. Separation was performed on a fused-silica capillary column of 30 m x 0.53 mm I.D., 0.53 microns film thickness. The detector was a flame ionization detector. Helium gas at a flow-rate of 3 ml/min was used as a carrier gas. The analysis were performed with linear temperature programming. Nine components were detected and special attention was given to the major phenolic compound, eugenol.
A rapid and selective high-performance liquid chromatographic (HPLC) method for the simultaneous determination of the antifilarial drug UMF-078 (I) and its metabolites UMF-060 (II) and flubendazole (III) is described. After a simple extraction from whole blood, the compounds were determined by HPLC using a C18 Inertsil ODS-2 reversed-phase column with methanol-0.05M ammonium acetate (pH 4.0) as the mobile phase and ultraviolet detection at 291 nm. The average recoveries of I, II and III over the concentration range 20-500 ng ml-1 were 69.9 +/- 4.7, 85.6 +/- 4.4 and 85.1 +/- 6.0%, respectively. The minimum detectable concentrations in whole blood for I, II and III were 10, 7 and 7 ng ml-1, respectively. This method was found to be suitable for pharmacokinetic studies.