The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF-κB as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions.
Vitamin D plays a significant role in the immune system modulation and may confer a protective role in autoimmune diseases. We conducted a case-control study to compare 25(OH)D levels in patients with BD who were managed at a regional rheumatology programme in the midwest region of Ireland compared to matched controls. Healthy controls were selected from the Irish health system and matched in 1 : 5 ratio for age, sex, and the month of the year. 25(OH)D levels <20 nmol/L were classified as deficient while levels between 20 and 40 nmol/L were classified as insufficient. Differences between groups were assessed using Mann-Whitney test and associations between cases and controls were expressed as odds ratios and 95% confidence intervals. Nineteen patients with BD were compared with 95 controls matched by age, sex, and month of blood draw. 25(OH)D levels were significantly higher in patients in BD than in matched controls (median values: 45 nmol/L versus 22 nmol/L, p < 0.005) and tended to be lower in patients with active disease than in those without (median values: 35 nmol/L (IQR: 22.75-47.25 nm/L) versus 50 nmol/L (IQR: 35-67 nmol/L), p = 0.11). Compared to controls, patients with BD were significantly less likely to have 25(OH)D deficiency or insufficiency (OR: 0.09, 95% CI: 0.03-0.28, p < 0.001). Our findings suggest a possible role for 25(OH)D in modifying the inflammatory response in BD and uncover a potential opportunity to assess whether correction of Vit D deficiency confers protective benefits.
Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma.