Displaying all 6 publications

Abstract:
Sort:
  1. Sayed IS, Ismail SS
    Int J Biomed Imaging, 2020;2020:9239753.
    PMID: 32308670 DOI: 10.1155/2020/9239753
    In single photon emission computed tomography (SPECT) imaging, the choice of a suitable filter and its parameters for noise reduction purposes is a big challenge. Adverse effects on image quality arise if an improper filter is selected. Filtered back projection (FBP) is the most popular technique for image reconstruction in SPECT. With this technique, different types of reconstruction filters are used, such as the Butterworth and the Hamming. In this study, the effects on the quality of reconstructed images of the Butterworth filter were compared with the ones of the Hamming filter. A Philips ADAC forte gamma camera was used. A low-energy, high-resolution collimator was installed on the gamma camera. SPECT data were acquired by scanning a phantom with an insert composed of hot and cold regions. A Technetium-99m radioactive solution was homogenously mixed into the phantom. Furthermore, a symmetrical energy window (20%) centered at 140 keV was adjusted. Images were reconstructed by the FBP method. Various cutoff frequency values, namely, 0.35, 0.40, 0.45, and 0.50 cycles/cm, were selected for both filters, whereas for the Butterworth filter, the order was set at 7. Images of hot and cold regions were analyzed in terms of detectability, contrast, and signal-to-noise ratio (SNR). The findings of our study indicate that the Butterworth filter was able to expose more hot and cold regions in reconstructed images. In addition, higher contrast values were recorded, as compared to the Hamming filter. However, with the Butterworth filter, the decrease in SNR for both types of regions with the increase in cutoff frequency as compared to the Hamming filter was obtained. Overall, the Butterworth filter under investigation provided superior results than the Hamming filter. Effects of both filters on the quality of hot and cold region images varied with the change in cutoff frequency.
  2. Che Azemin MZ, Hassan R, Mohd Tamrin MI, Md Ali MA
    Int J Biomed Imaging, 2020;2020:8828855.
    PMID: 32849861 DOI: 10.1155/2020/8828855
    The key component in deep learning research is the availability of training data sets. With a limited number of publicly available COVID-19 chest X-ray images, the generalization and robustness of deep learning models to detect COVID-19 cases developed based on these images are questionable. We aimed to use thousands of readily available chest radiograph images with clinical findings associated with COVID-19 as a training data set, mutually exclusive from the images with confirmed COVID-19 cases, which will be used as the testing data set. We used a deep learning model based on the ResNet-101 convolutional neural network architecture, which was pretrained to recognize objects from a million of images and then retrained to detect abnormality in chest X-ray images. The performance of the model in terms of area under the receiver operating curve, sensitivity, specificity, and accuracy was 0.82, 77.3%, 71.8%, and 71.9%, respectively. The strength of this study lies in the use of labels that have a strong clinical association with COVID-19 cases and the use of mutually exclusive publicly available data for training, validation, and testing.
  3. Khor HL, Liew SC, Zain JM
    Int J Biomed Imaging, 2016;2016:9583727.
    PMID: 26981111 DOI: 10.1155/2016/9583727
    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing.
  4. Salama A, Malekmohammadi A, Mohanna S, Rajkumar R
    Int J Biomed Imaging, 2017;2017:3589324.
    PMID: 29225613 DOI: 10.1155/2017/3589324
    This paper presents a multitasking electrical impedance tomography (EIT) system designed to improve the flexibility and durability of an existing EIT system. The ability of the present EIT system to detect, locate, and reshape objects was evaluated by four different experiments. The results of the study show that the system can detect and locate an object with a diameter as small as 1.5 mm in a testing tank with a diameter of 134 mm. Moreover, the results demonstrate the ability of the current system to reconstruct an image of several dielectric object shapes. Based on the results of the experiments, the programmable EIT system can adapt the EIT system for different applications without the need to implement a new EIT system, which may help to save time and cost. The setup for all the experiments consisted of a testing tank with an attached 16-electrode array made of titanium alloy grade 2. The titanium alloy electrode was used to enhance EIT system's durability and lifespan.
  5. Bilal M, Shah JA, Qureshi IM, Kadir K
    Int J Biomed Imaging, 2018;2018:7803067.
    PMID: 29610569 DOI: 10.1155/2018/7803067
    Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. TheL1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS), is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated andin vivo2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean square error (MSE) with different acceleration factors for the proposed method. Experimental results also provide a comparison betweenk-tFOCUSS with MEMC and the proposed method.
  6. Taresh MM, Zhu N, Ali TAA, Hameed AS, Mutar ML
    Int J Biomed Imaging, 2021;2021:8828404.
    PMID: 34194484 DOI: 10.1155/2021/8828404
    The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19 diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease burden and the need for preventive measures are in conflict with the currently available resources.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links