Displaying all 2 publications

Abstract:
Sort:
  1. Far HS, Pin NT, Kong CY, Fong KS, Kian CW, Yan CK
    Int Arch Occup Environ Health, 1993;64(6):439-43.
    PMID: 8458660
    The present study was conducted to evaluate the role of ingestion through hand and mouth contamination in the absorption of lead in 25 lead-acid battery workers. Levels of personal exposure to airborne lead ranged from 0.004 to 2.58 mg/m3 [geometric mean 0.098, with 25% of samples exceeding threshold limit values (ACGIH) of 0.15 mg/m3]; the mean (SD) blood lead level was 48.9 (10.8) micrograms/dl. Mean hand lead contents increased 33-fold from preshift levels on Monday mornings (33.5 micrograms/500 ml) to midshift levels on Thursday afternoons (1121 micrograms/500 ml). Mouth lead contents increased 16-fold from 0.021 micrograms/50 ml on Mondays to 0.345 micrograms/50 ml on Thursdays. The typical Malay racial habit of feeding with bare hands and fingers without utensils (closely associated with mouth and hand lead levels on Mondays) explained the bulk of the variance in blood lead levels (40%), with mouth lead on Thursdays (closely associated with poor personal hygiene) explaining a further 10%. Air lead was not a significant explanatory variable. The implementation of a programme of reinforcing hand-washing and mouth-rinsing practices resulted in a reduction of the blood lead level by 11.5% 6 months later. These results indicate that parenteral intake from hand and mouth contamination is an important cause of lead absorption in lead-exposed workers.
  2. Devi KR, Lee LJ, Yan LT, Syafinaz AN, Rosnah I, Chin VK
    Int Arch Occup Environ Health, 2021 08;94(6):1147-1171.
    PMID: 33725176 DOI: 10.1007/s00420-021-01677-z
    Zoonotic tuberculosis caused by Mycobacterium bovis (M. bovis), a member of Mycobacterium tuberculosis complex (MTBC) has increasingly gathered attention as a public health risk, particularly in developing countries with higher disease prevalence. M. bovis is capable of infecting multiple hosts encompassing a number of domestic animals, in particular cattle as well as a broad range of wildlife reservoirs. Humans are the incidental hosts of M. bovis whereby its transmission to humans is primarily through the consumption of cattle products such as unpasteurized milk or raw meat products that have been contaminated with M. bovis or the transmission could be due to close contact with infected cattle. Also, the transmission could occur through aerosol inhalation of infective droplets or infected body fluids or tissues in the presence of wound from infected animals. The zoonotic risk of M. bovis in humans exemplified by miscellaneous studies across different countries suggested the risk of occupational exposure towards M. bovis infection, especially those animal handlers that have close and unreserved contact with cattle and wildlife populations These animal handlers comprising of livestock farmers, abattoir workers, veterinarians and their assistants, hunters, wildlife workers as well as other animal handlers are at different risk of contracting M. bovis infection, depending on the nature of their jobs and how close is their interaction with infected animals. It is crucial to identify the underlying transmission risk factors and probable transmission pathways involved in the zoonotic transmission of M. bovis from animals to humans for better designation and development of specific preventive measures and guidelines that could reduce the risk of transmission and to protect these different occupational-related/populations at risk. Effective control and disease management of zoonotic tuberculosis caused by M. bovis in humans are also hindered by various challenges and factors involved at animal-human interface. A closer look into factors affecting proper disease control and management of M. bovis are therefore warranted. Hence, in this narrative review, we have gathered a number of different studies to highlight the risk of occupational exposure to M. bovis infection and addressed the limitations and challenges underlying this context. This review also shed lights on various components and approaches in tackling M. bovis infection at animal-human interface.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links