Displaying all 4 publications

Abstract:
Sort:
  1. Kamel NS, Sayeed S, Ellis GA
    IEEE Trans Pattern Anal Mach Intell, 2008 Jun;30(6):1109-13.
    PMID: 18421114 DOI: 10.1109/TPAMI.2008.32
    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
  2. Yap PT, Paramesran R
    IEEE Trans Pattern Anal Mach Intell, 2005 Dec;27(12):1996-2002.
    PMID: 16355666
    Legendre moments are continuous moments, hence, when applied to discrete-space images, numerical approximation is involved and error occurs. This paper proposes a method to compute the exact values of the moments by mathematically integrating the Legendre polynomials over the corresponding intervals of the image pixels. Experimental results show that the values obtained match those calculated theoretically, and the image reconstructed from these moments have lower error than that of the conventional methods for the same order. Although the same set of exact Legendre moments can be obtained indirectly from the set of geometric moments, the computation time taken is much longer than the proposed method.
  3. Teoh AB, Goh A, Ngo DC
    IEEE Trans Pattern Anal Mach Intell, 2006 Dec;28(12):1892-901.
    PMID: 17108365
    Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.
  4. Lim CP, Leong JH, Kuan MM
    IEEE Trans Pattern Anal Mach Intell, 2005 Apr;27(4):648-53.
    PMID: 15794170
    A hybrid neural network comprising Fuzzy ARTMAP and Fuzzy C-Means Clustering is proposed for pattern classification with incomplete training and test data. Two benchmark problems and a real medical pattern classification task are employed to evaluate the effectiveness of the hybrid network. The results are analyzed and compared with those from other methods.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links