Displaying all 3 publications

Abstract:
Sort:
  1. Wilts BD, Giraldo MA, Stavenga DG
    Front. Zool., 2016;13:36.
    PMID: 27525030 DOI: 10.1186/s12983-016-0168-7
    BACKGROUND: Ultrastructures in butterfly wing scales can take many shapes, resulting in the often striking coloration of many butterflies due to interference of light. The plethora of coloration mechanisms is dazzling, but often only single mechanisms are described for specific animals.

    RESULTS: We have here investigated the male Rajah Brooke's birdwing, Trogonoptera brookiana, a large butterfly from Malaysia, which is marked by striking, colorful wing patterns. The dorsal side is decorated with large, iridescent green patterning, while the ventral side of the wings is primarily brown-black with small white, blue and green patches on the hindwings. Dense arrays of red hairs, creating a distinct collar as well as contrasting areas ventrally around the thorax, enhance the butterfly's beauty. The remarkable coloration is realized by a diverse number of intricate and complicated nanostructures in the hairs as well as the wing scales. The red collar hairs contain a broad-band absorbing pigment as well as UV-reflecting multilayers resembling the photonic structures of Morpho butterflies; the white wing patches consist of scales with prominent thin film reflectors; the blue patches have scales with ridge multilayers and these scales also have centrally concentrated melanin. The green wing areas consist of strongly curved scales, which possess a uniquely arranged photonic structure consisting of multilayers and melanin baffles that produces highly directional reflections.

    CONCLUSION: Rajah Brooke's birdwing employs a variety of structural and pigmentary coloration mechanisms to achieve its stunning optical appearance. The intriguing usage of order and disorder in related photonic structures in the butterfly wing scales may inspire novel optical materials as well as investigations into the development of these nanostructures in vivo.

  2. Lee CC, Nakao H, Tseng SP, Hsu HW, Lin GL, Tay JW, et al.
    Front. Zool., 2017;14:24.
    PMID: 28503187 DOI: 10.1186/s12983-017-0210-4
    BACKGROUND: Reproductive division of labor is one of the key features of social insects. Queens are adapted for reproduction while workers are adapted for foraging and colony maintenance. In many species, however, workers retain functional ovaries and can lay unfertilized male eggs or trophic eggs. Here we report for the first time on the occurrence of physogastric workers and apparent worker reproduction in the invasive yellow crazy ant Anoplolepis gracilipes (Fr. Smith). We further examined the reproductive potential and nutritional role of physogastric workers through multidisciplinary approaches including morphological characterization, laboratory manipulation, genetic analysis and behavioral observation.

    RESULTS: Egg production with two types of eggs, namely reproductive and trophic eggs, by physogastric workers was found. The reproductive egg was confirmed to be haploid and male-destined, suggesting that the workers produced males via arrhenotokous parthenogenesis as no spermatheca was discovered. Detailed observations suggested that larvae were mainly fed with trophic eggs. Along with consumption of trophic eggs by queens and other castes as part of their diet, the vital role of physogastric workers as "trophic specialist" is confirmed.

    CONCLUSION: We propose that adaptive advantages derived from worker reproduction for A. gracilipes may include 1) trophic eggs provisioned by physogastric workers likely assist colonies of A. gracilipes in overcoming unfavorable conditions such as paucity of food during critical founding stage; 2) worker-produced males are fertile and thus might offer an inclusive fitness advantage for the doomed orphaned colony.

  3. Delgado MM, Tikhonov G, Meyke E, Babushkin M, Bespalova T, Bondarchuk S, et al.
    Front. Zool., 2018;15:41.
    PMID: 30410564 DOI: 10.1186/s12983-018-0286-5
    Background: For brown bears (Ursus arctos), hibernation is a critical part of the annual life cycle because energy savings during hibernation can be crucial for overwintering, and females give birth to cubs at that time. For hibernation to be a useful strategy, timing is critical. However, environmental conditions vary greatly, which might have a negative effect on the functionality of the evolved biological time-keeping. Here, we used a long-term dataset (69 years) on brown bear denning phenology recorded in 12 Russian protected areas and quantified the phenological responses to variation in temperature and snow depth. Previous studies analyzing the relationship between climate and denning behavior did not consider that the brown bear response to variation in climatic factors might vary through a period preceding den entry and exit. We hypothesized that there is a seasonal sensitivity pattern of bear denning phenology in response to variation in climatic conditions, such that the effect of climatic variability will be pronounced only when it occurs close to den exit and entry dates.

    Results: We found that brown bears are most sensitive to climatic variations around the observed first den exit and last entry dates, such that an increase/decrease in temperature in the periods closer to the first den exit and last entry dates have a greater influence on the denning dates than in other periods.

    Conclusions: Our study shows that climatic factors are modulating brown bear hibernation phenology and provide a further structuring of this modulation. The sensitivity of brown bears to changes in climatic factors during hibernation might affect their ability to cope with global climate change. Therefore, understanding these processes will be essential for informed management of biodiversity in a changing world.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links