Displaying all 2 publications

Abstract:
Sort:
  1. Yan P, Tze UY, Jagadish PAR, Hon LK, Chowdhury LNS, Tao S, et al.
    Drug Metab Bioanal Lett, 2022;15(3):178-191.
    PMID: 36508274 DOI: 10.2174/1872312815666220707114744
    BACKGROUND: Agarwood tea derived from Aquilaria malaccensis Lamk is becoming an increasingly popular herbal drink that is said to have multiple health benefits. Co-administration of this tea and clinical used drugs is possible, but it increases the risk of drug-herb interactions.

    OBJECTIVE: This in vitro study investigated the inhibitory effects of agarwood tea aqueous extract on the eight major human drug-metabolising cytochrome P450 (CYP) enzyme activities.

    METHODS: High-throughput fluorescence-based Vivid® CYP450 screening kits were employed to obtain the enzyme activities before and after incubation with agarwood tea aqueous extract.

    RESULTS: Agarwood aqueous extract potently inhibited CYP2C9, CYP2D6, and CYP3A4 activities with Ki values of 5.1, 34.5, and 20.3μg/ml, respectively. The most likely inhibition mode responsible for these inhibitions was non-competitive inhibition. On the other hand, at 1000μg/ml, agarwood tea aqueous extract negligibly inhibited CYP1A2, CYP2B6, CYP2C19, CYP2E1, and CYP3A5 activities.

    CONCLUSION: These findings can be used to design additional in vitro investigations using clinical relevant drug substrates for CYP2C9, CYP2D6, and CYP3A4. Subsequently, future studies can be conducted to determine potential interactions between agarwood tea aqueous extract and CYP using in vivo models.

  2. Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE
    Drug Metab Bioanal Lett, 2022;15(1):51-63.
    PMID: 35049443 DOI: 10.2174/1872312815666220113125232
    BACKGROUND: Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population.

    METHODS: CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants.

    RESULTS: Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies.

    CONCLUSION: In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links