Agricultural development is a major threat to global biodiversity, and effective conservation actions are crucial. Physiological repercussions of life alongside human-modified landscapes can undermine adaptable species' health and population viability; however, baseline data are lacking for many wildlife species. We assessed the physiological status of a generalist carnivore, the Malay civet (Viverra tangalunga), persisting within an extensively human-modified system in Sabah, Malaysian Borneo. We characterized hematology and serum biochemistry panels from civets sampled across a mosaic landscape comprising tropical forest fragments and oil palm plantations. Intra-population variation in certain blood parameters were explained by expected biological drivers such as sex, age category and sampling season. Furthermore, we determined several erythrocyte measures, immune cell counts and dietary biochemistry markers significantly varied with proximity to oil palm plantation boundaries. These findings were supported by a case study, whereby blood profiles of GPS collared male civets were contrasted based on their exclusive use of forests or use of oil palm plantations. These data provide robust and valuable first insights into this species' physiological status and suggest agricultural landscapes are impacting the persisting population.
Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.
Agricultural expansion in Southeast Asia has converted most natural landscapes into mosaics of forest interspersed with plantations, dominated by the presence of generalist species that benefit from resource predictability. Dietary shifts, however, can result in metabolic alterations and the exposure of new parasites that can impact animal fitness and population survival. Our study focuses on the Asian water monitor lizard (Varanus salvator), one of the largest predators in the Asian wetlands, as a model species to understand the health consequences of living in a human-dominated landscape in Sabah, Malaysian Borneo. We evaluated the effects of dietary diversity on the metabolism of monitor lizards and the impact on the composition of their parasite communities in an oil palm-dominated landscape. Our results showed that (1) rodent-dominated diets were associated with high levels of lipids, proteins and electrolytes, akin to a fast-food-based diet of little representativeness of the full nutritional requirements, but highly available, and (2) lizards feeding on diverse diets hosted more diverse parasite communities, however, at overall lower parasite prevalence. Furthermore, we observed that the effect of diet on lipid concentration differed depending on the size of individual home ranges, suggesting that sedentarism plays an important role in the accumulation of cholesterol and triglycerides. Parasite communities were also affected by a homogeneous dietary behaviour, as well as by habitat type. Dietary diversity had a negative effect on both parasite richness and prevalence in plantations, but not in forested areas. Our study indicates that human-dominated landscapes can pose a negative effect on generalist species and hints to the unforeseen health consequences for more vulnerable taxa using the same landscapes. Thus, it highlights the potential role of such a widely distributed generalist as model species to monitor physiological effects in the ecosystem in an oil palm-dominated landscape.