Envenomation by two medically important Sundaic pit vipers, Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia), causes hemotoxic syndrome with a potentially fatal outcome. Research on the compositions and antigenicity of these pit viper venoms is however lacking, limiting our understanding of the pathophysiology and treatment of envenomation. This study investigated the venom proteomes of both species through a protein decomplexation strategy, applying C18 reverse-phase high-performance liquid chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein identification through nano-electrospray ionization liquid chromatography-tandem mass spectrometry (nano-ESI-LCMS/MS) of trypsin-digested peptides. The venom antigenicity was profiled against the Thai Green Pit Viper Antivenom (GPVAV, a hetero-specific antivenom), using indirect enzyme-linked immunosorbent assay (ELISA). The venom proteomes of T. wiroti and T. puniceus consisted of 10 and 12 toxin families, respectively. The major proteins were of diverse snake venom serine proteases (19-30% of total venom proteins), snake venom metalloproteinases (17-26%), disintegrins (9-16%), phospholipases A2 (8-28%) and C-type lectins (~8%). These were putative snake toxins implicated in hemorrhage and coagulopathy, consistent with clinical hemotoxicity. GPVAV showed strong immunorecognition toward high and medium molecular weight proteins (e.g., SVMP and PLA2) in both venoms, while a lower binding activity was observed toward small proteins such as disintegrins. Conserved antigenicity in the major hemotoxins supported toxicity cross-neutralization by GPVAV and indicated that the immunorecognition of low molecular weight toxins may be optimized for improved binding efficacy. Taken together, the study provides insights into the pathophysiology and antivenom treatment of envenomation caused by T. wiroti and T. puniceus in the region.
Triacylglycerol (TAG) is crucial in animal energy storage and membrane biogenesis. The conversion of diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylglycerol acyltransferase enzymes (DGATs), which are encoded by genes belonging to two distinct gene families. Although arthropods are known to possess DGATs activities and utilize the glycerol-3-phosphate pathway and MAG pathway for TAG biosynthesis, the sequence characterization and evolutionary history of DGATs in arthropods remains unclear. This study aimed to comparatively evaluate genomic analyses of DGATs in 13 arthropod species and 14 outgroup species. We found that arthropods lack SOAT2 genes within the DGAT1 family, while DGAT2, MOGAT3, AWAT1, and AWAT2 were absent from in DGAT2 family. Gene structure and phylogenetic analyses revealed that DGAT1 and DGAT2 genes come from different gene families. The expression patterns of these genes were further analyzed in crustaceans, demonstrating the importance of DGAT1 in TAG biosynthesis. Additionally, we identified the DGAT1 gene in Swimming crab (P. trituberculatus) undergoes a mutually exclusive alternative splicing event in the molt stages. Our newly determined DGAT inventory data provide a more complete scenario and insights into the evolutionary dynamics and functional diversification of DGATs in arthropods.
A comprehensive bioinformatics analysis was conducted to elucidate the innate immune response of Charybdis japonica following exposure to Aeromonas hydrophila. This study integrated metabolomics, 16S rRNA sequencing, and enzymatic activity data to dissect the immune mechanisms activated in response to infection. Infection with A. hydrophila resulted in an increased abundance of beneficial intestinal genera such as Photobacterium spp., Rhodobacter spp., Polaribacter spp., Psychrilyobacter spp., and Mesoflavibacter spp. These probiotics appear to suppress A. hydrophila colonization by competitively dominating the intestinal microbiota. Key metabolic pathways affected included fatty acid biosynthesis, galactose metabolism, and nitrogen metabolism, highlighting their role in the crab's intestinal response. Enzymatic analysis revealed a decrease in activities of hexokinase, phosphofructokinase, and pyruvate kinase, which are essential for energy homeostasis and ATP production necessary for stress responses. Additionally, reductions were observed in the activities of acetyl-CoA carboxylase and fatty acid synthase. Gene expression analysis showed downregulation in Peroxiredoxin 1 (PRDX1), Peroxiredoxin 2 (PRDX2), glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH), with concurrent increases in malondialdehyde (MDA) levels, indicating severe oxidative stress. This study provides insights into the molecular strategies employed by marine crabs to counteract bacterial invasions in their natural habitat.