Displaying all 6 publications

Abstract:
Sort:
  1. Chew LH, Teo J, Mountstephens J
    Cogn Neurodyn, 2016 Apr;10(2):165-73.
    PMID: 27066153 DOI: 10.1007/s11571-015-9363-z
    Recognition and identification of aesthetic preference is indispensable in industrial design. Humans tend to pursue products with aesthetic values and make buying decisions based on their aesthetic preferences. The existence of neuromarketing is to understand consumer responses toward marketing stimuli by using imaging techniques and recognition of physiological parameters. Numerous studies have been done to understand the relationship between human, art and aesthetics. In this paper, we present a novel preference-based measurement of user aesthetics using electroencephalogram (EEG) signals for virtual 3D shapes with motion. The 3D shapes are designed to appear like bracelets, which is generated by using the Gielis superformula. EEG signals were collected by using a medical grade device, the B-Alert X10 from advance brain monitoring, with a sampling frequency of 256 Hz and resolution of 16 bits. The signals obtained when viewing 3D bracelet shapes were decomposed into alpha, beta, theta, gamma and delta rhythm by using time-frequency analysis, then classified into two classes, namely like and dislike by using support vector machines and K-nearest neighbors (KNN) classifiers respectively. Classification accuracy of up to 80 % was obtained by using KNN with the alpha, theta and delta rhythms as the features extracted from frontal channels, Fz, F3 and F4 to classify two classes, like and dislike.
  2. Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J
    Cogn Neurodyn, 2016 Feb;10(1):49-72.
    PMID: 26834861 DOI: 10.1007/s11571-015-9365-x
    This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network's rate of failure to shift attention is lower than the control network's, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children.
  3. Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA
    Cogn Neurodyn, 2017 Apr;11(2):161-171.
    PMID: 28348647 DOI: 10.1007/s11571-016-9416-y
    Screening alcohol use disorder (AUD) patients has been challenging due to the subjectivity involved in the process. Hence, robust and objective methods are needed to automate the screening of AUD patients. In this paper, a machine learning method is proposed that utilized resting-state electroencephalography (EEG)-derived features as input data to classify the AUD patients and healthy controls and to perform automatic screening of AUD patients. In this context, the EEG data were recorded during 5 min of eyes closed and 5 min of eyes open conditions. For this purpose, 30 AUD patients and 15 aged-matched healthy controls were recruited. After preprocessing the EEG data, EEG features such as inter-hemispheric coherences and spectral power for EEG delta, theta, alpha, beta and gamma bands were computed involving 19 scalp locations. The selection of most discriminant features was performed with a rank-based feature selection method assigning a weight value to each feature according to a criterion, i.e., receiver operating characteristics curve. For example, a feature with large weight was considered more relevant to the target labels than a feature with less weight. Therefore, a reduced set of most discriminant features was identified and further be utilized during classification of AUD patients and healthy controls. As results, the inter-hemispheric coherences between the brain regions were found significantly different between the study groups and provided high classification efficiency (Accuracy = 80.8,sensitivity = 82.5,and specificity = 80,F-Measure = 0.78). In addition, the power computed in different EEG bands were found significant and provided an overall classification efficiency as (Accuracy = 86.6,sensitivity = 95,specificity = 82.5,and F-Measure = 0.88). Further, the integration of these EEG feature resulted into even higher results (Accuracy = 89.3 %,sensitivity = 88.5 %,specificity = 91 %,and F-Measure = 0.90). Based on the results, it is concluded that the EEG data (integration of the theta, beta, and gamma power and inter-hemispheric coherence) could be utilized as objective markers to screen the AUD patients and healthy controls.
  4. Subhani AR, Kamel N, Mohamad Saad MN, Nandagopal N, Kang K, Malik AS
    Cogn Neurodyn, 2018 Feb;12(1):1-20.
    PMID: 29435084 DOI: 10.1007/s11571-017-9460-2
    Complaints of stress are common in modern life. Psychological stress is a major cause of lifestyle-related issues, contributing to poor quality of life. Chronic stress impedes brain function, causing impairment of many executive functions, including working memory, decision making and attentional control. The current study sought to describe newly developed stress mitigation techniques, and their influence on autonomic and endocrine functions. The literature search revealed that the most frequently studied technique for stress mitigation was biofeedback (BFB). However, evidence suggests that neurofeedback (NFB) and noninvasive brain stimulation (NIBS) could potentially provide appropriate approaches. We found that recent studies of BFB methods have typically used measures of heart rate variability, respiration and skin conductance. In contrast, studies of NFB methods have typically utilized neurocomputation techniques employing electroencephalography, functional magnetic resonance imaging and near infrared spectroscopy. NIBS studies have typically utilized transcranial direct current stimulation methods. Mitigation of stress is a challenging but important research target for improving quality of life.
  5. Mumtaz W, Vuong PL, Malik AS, Rashid RBA
    Cogn Neurodyn, 2018 Apr;12(2):141-156.
    PMID: 29564024 DOI: 10.1007/s11571-017-9465-x
    The screening test for alcohol use disorder (AUD) patients has been of subjective nature and could be misleading in particular cases such as a misreporting the actual quantity of alcohol intake. Although the neuroimaging modality such as electroencephalography (EEG) has shown promising research results in achieving objectivity during the screening and diagnosis of AUD patients. However, the translation of these findings for clinical applications has been largely understudied and hence less clear. This study advocates the use of EEG as a diagnostic and screening tool for AUD patients that may help the clinicians during clinical decision making. In this context, a comprehensive review on EEG-based methods is provided including related electrophysiological techniques reported in the literature. More specifically, the EEG abnormalities associated with the conditions of AUD patients are summarized. The aim is to explore the potentials of objective techniques involving quantities/features derived from resting EEG, event-related potentials or event-related oscillations data.
  6. Dogan S, Barua PD, Baygin M, Tuncer T, Tan RS, Ciaccio EJ, et al.
    Cogn Neurodyn, 2024 Oct;18(5):2503-2519.
    PMID: 39555305 DOI: 10.1007/s11571-024-10104-1
    This paper presents an innovative feature engineering framework based on lattice structures for the automated identification of Alzheimer's disease (AD) using electroencephalogram (EEG) signals. Inspired by the Shannon information entropy theorem, we apply a probabilistic function to create the novel Lattice123 pattern, generating two directed graphs with minimum and maximum distance-based kernels. Using these graphs and three kernel functions (signum, upper ternary, and lower ternary), we generate six feature vectors for each input signal block to extract textural features. Multilevel discrete wavelet transform (MDWT) was used to generate low-level wavelet subbands. Our proposed model mirrors deep learning approaches, facilitating feature extraction in frequency and spatial domains at various levels. We used iterative neighborhood component analysis to select the most discriminative features from the extracted vectors. An iterative hard majority voting and a greedy algorithm were used to generate voted vectors to select the optimal channel-wise and overall results. Our proposed model yielded a classification accuracy of more than 98% and a geometric mean of more than 96%. Our proposed Lattice123 pattern, dynamic graph generation, and MDWT-based multilevel feature extraction can detect AD accurately as the proposed pattern can extract subtle changes from the EEG signal accurately. Our prototype is ready to be validated using a large and diverse database.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links