Displaying all 3 publications

Abstract:
Sort:
  1. Zhang C, Sunarso J, Liu S
    Chem Soc Rev, 2017 Apr 24.
    PMID: 28436504 DOI: 10.1039/c6cs00841k
    CO2 resistance is an enabling property for the wide-scale implementation of oxygen-selective mixed ionic-electronic conducting (MIEC) membranes in clean energy technologies, i.e., oxyfuel combustion, clean coal energy delivery, and catalytic membrane reactors for greener chemical synthesis. The significant rise in the number of studies over the past decade and the major progress in CO2-resistant MIEC materials warrant systematic guidelines on this topic. To this end, this review features the pertaining aspects in addition to the recent status and advances of the two most promising membrane materials, perovskite and fluorite-based dual-phase materials. We explain how to quantify and design CO2 resistant membranes using the Lewis acid-base reaction concept and thermodynamics perspective and highlight the relevant characterization techniques. For perovskite materials, a trade-off generally exists between CO2 resistance and O2 permeability. Fluorite materials, despite their inherent CO2 resistance, typically have low O2 permeability but this can be improved via different approaches including thin film technology and the recently developed minimum internal electronic short-circuit second phase and external electronic short-circuit decoration. We then elaborate the two main future directions that are centralized around the development of new oxide compositions capable of featuring simultaneously high CO2 resistance and O2 permeability and the exploitation of phase reactions to create a new conductive phase along the grain boundaries of dual-phase materials. The final part of the review discusses various complimentary characterization techniques and the relevant studies that can provide insights into the degradation mechanism of oxide-based materials upon exposure to CO2.
  2. Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, et al.
    Chem Soc Rev, 2017 Sep 29.
    PMID: 28959815 DOI: 10.1039/c6cs00921b
    The efficient handling of wastewater pollutants is a must, since they are continuously defiling limited fresh water resources, seriously affecting the terrestrial, aquatic, and aerial flora and fauna. Our vision is to undertake an exhaustive examination of current research trends with a focus on nanomaterials (NMs) to considerably improve the performance of classical wastewater treatment technologies, e.g. adsorption, catalysis, separation, and disinfection. Additionally, NM-based sensor technologies are considered, since they have been significantly used for monitoring water contaminants. We also suggest future directions to inform investigators of potentially disruptive NM technologies that have to be investigated in more detail. The fate and environmental transformations of NMs, which need to be addressed before large-scale implementation of NMs for water purification, are also highlighted.
  3. Chong WK, Ng BJ, Tan LL, Chai SP
    Chem Soc Rev, 2024 Sep 02.
    PMID: 39222069 DOI: 10.1039/d3cs01040f
    Photocatalytic water splitting represents a leading approach to harness the abundant solar energy, producing hydrogen as a clean and sustainable energy carrier. Zinc indium sulfide (ZIS) emerges as one of the most captivating candidates attributed to its unique physicochemical and photophysical properties, attracting much interest and holding significant promise in this domain. To develop a highly efficient ZIS-based photocatalytic system for green energy production, it is paramount to comprehensively understand the strengths and limitations of ZIS, particularly within the framework of solar-driven water splitting. This review elucidates the three sequential steps that govern the overall efficiency of ZIS with a sharp focus on the mechanisms and inherent drawbacks associated with each phase, including commonly overlooked aspects such as the jeopardising photocorrosion issue, the neglected oxidative counter surface reaction kinetics in overall water splitting, the sluggish photocarrier dynamics and the undesired side redox reactions. Multifarious material design strategies are discussed to specifically mitigate the formidable limitations and bottleneck issues. This review concludes with the current state of ZIS-based photocatalytic water splitting systems, followed by personal perspectives aimed at elevating the field to practical consideration for future endeavours towards sustainable hydrogen production through solar-driven water splitting.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links