METHODS: We conducted a search of PubMed, EMBASE and Cochrane databases until 31st December 2014 for randomized control trials (RCTs) in HF evaluating statins versus placebo. Identified RCTs and their respective abstracted information were grouped according to statin type evaluated and analyzed separately. Outcomes were initially pooled with the Peto's one-step method, producing odd ratios (OR) and 95 % confidence intervals (CI) for each statin type. Using these pooled estimates, we performed adjusted indirect comparisons of lipophilic versus hydrophilic statin for each outcome.
RESULTS: Thirteen studies involving 10,966 patients were identified and analyzed. Lipophilic statins were superior to hydrophilic rosuvastatin regarding all-cause mortality (OR 0 · 50; 95 % CI, 0 · 11-0 · 89; p = 0 · 01), cardiovascular mortality (OR 0 · 61; 0 · 25-0 · 97; p = 0 · 009), and hospitalization for worsening HF (OR 0 · 52; 0 · 21-0 · 83; p = 0 · 0005). However, both statins were comparable with regards to cardiovascular hospitalization [OR 0 · 80 (0 · 31, 1 · 28); p = 0 · 36].
CONCLUSIONS: Lipophilic statin treatment shows significant decreases in all-cause mortality, cardiovascular mortality and hospitalization for worsening HF compared with rosuvastatin treatment. This meta-analysis provides preliminary evidence that lipophilic statins offer better clinical outcomes in HF till data from head to head comparisons are available.
METHODS: The COMBO collaboration (n = 3614) is a patient-level pooled dataset from the MASCOT and REMEDEE registries. We evaluated outcomes by ACS status, and ACS subtype in patients with ST segment elevation myocardial infarction (STEMI) or non-STEMI (NSTEMI) versus unstable angina (UA). The primary endpoint was 1-year target lesion failure (TLF), composite of cardiac death, target vessel myocardial infarction, or clinically driven target lesion revascularization. Secondary outcomes included stent thrombosis (ST).
RESULTS: We compared 1965 (54%) ACS and 1649 (46.0%) non-ACS patients. ACS presentations included 40% (n = 789) STEMI, 31% (n = 600) NSTEMI, and 29% (n = 576) UA patients. Risk of 1-year TLF was greater in ACS patients (4.5% vs. 3.3%, HR 1.51 95% CI 1.01-2.25, p = 0.045) without significant differences in definite/probable ST (1.1% vs 0.5%, HR 2.40, 95% CI 0.91-6.31, p = 0.08). One-year TLF was similar in STEMI, NSTEMI, and UA (4.8% vs 4.8% vs. 3.7%, p = 0.60), but definite/probable ST was higher in STEMI patients (1.9% vs 0.5% vs 0.7%, p = 0.03). Adjusted outcomes were not different in MI versus UA patients.
CONCLUSIONS: Despite the novel EPC capture technology, COMBO stent PCI was associated with somewhat greater risk of 1-year TLF in ACS than in non-ACS patients, without significant differences in stent thrombosis. No differences were observed in 1-year TLF among ACS subtypes.
METHODS: Patient-level data from two all-comers observational studies (ClinicalTrials.gov Identifiers: NCT02629575 and NCT02905214) were pooled and analyzed in terms of their primary endpoint. During the data verification process, we observed substantial deviations from DAPT guideline recommendations. To illuminate this gap between clinical practice and guideline recommendations, we conducted a post hoc analysis of DAPT regimens and clinical event rates for which we defined the net adverse event rate (NACE) consisting of target lesion revascularization (TLR, primary endpoint of all-comers observational studies) all-cause death, myocardial infarction (MI), stent thrombosis (ST), and bleeding events. A logistic regression was utilized to determine predictors why ticagrelor was used in stable coronary artery disease (CAD) patients instead of the guideline-recommended clopidogrel.
RESULTS: For stable CAD, the composite endpoint of clinical, bleeding, and stent thrombosis, i.e., NACE, between the clopidogrel and ticagrelor treatment groups was not different (5.4% vs. 5.1%, p = 0.745). Likewise, in the acute coronary syndrome (ACS) cohort, the NACE rates were not different between both DAPT strategies (9.2% vs. 9.3%, p = 0.927). There were also no differences in the accumulated rates for TLR, myocardial infarction ([MI], mortality, bleeding events, and stent thrombosis in elective and ACS patients. The main predictors for ticagrelor use in stable CAD patients were age
METHODS: A systematic search of the literature up to May 2020 was conducted in PubMed, Ovid Medline, EBSCOhost, Scopus, and the Cochrane Library to identify relevant published studies on quercetin and cardiac function using standardized criteria. Meta-analyses were performed on animal studies of pressure overload and ischemia-reperfusion (I/R) injury.
RESULTS: The effects of quercetin on cardiac function in both models were qualitatively reported in 14 studies. The effects of quercetin in four pressure-overload model studies involving 73 rodents and eight I/R-injury model studies involving 120 rodents were quantitatively assessed by meta-analysis. Quercetin improved the overall cardiac function in both pressure overload (n = 4 studies, n = 73 rodents; SMD = - 1.50; 95% CI: - 2.66 to - 0.33; P
METHODS: This prospective study employed a parallel design, single-center design, and randomized approach. Genotyping for the CYP2C19*2 and *3 polymorphisms was conducted using the Nested Allele-Specific Multiplex PCR (NASM-PCR) technique. Patients meeting the inclusion criteria underwent genotyping for CYP2C19 polymorphisms. Following PCI, patients were randomly assigned to receive either ticagrelor or clopidogrel. PRI assessments were performed four hours after loading dose administration. The trial was registered with ClinicalTrials.gov under the identifier NCT05516784.
RESULTS: Among the 94 patients recruited for the study, 40 (42.55%) were identified as carriers of the LOF allele for CYP2C19*2 and *3 (*1/*2, *2/*2, *1/*3). Out of the 84 patients evaluated for PRI (44 receiving clopidogrel and 40 receiving ticagrelor), 21 (47.7%) of the clopidogrel group and 39 (97.5%) of the ticagrelor group exhibited a favorable response to antiplatelet therapy (PRI