Albino Wistar rats of both sexes were given a conditioned taste aversion training (CTA). Saccharin was used as the conditional stimulus (CS) and apomorphine-induced illness as the unconditional stimulus (US) on day 4. Amnestic treatment with electroconvulsive shock (ECS) or nitrogen anoxia were given to the rats at various points within the 180-min long CS-US interval as well as after the US. They were reexposed to the CS on days 5 and 6 in order to evaluate CTA and its extinction respectively. Apomorphine injection alone produced significant CTA as long as the CS-US interval was less than 120 min but not beyond it. Saline injections, with or without amnestic treatments, produced only an adaptation to and preference for saccharin. ECS could prevent CTA when delivered within 85 min before or 110 min after the US. Anoxia was effective at a much shorter range of time than ECS. The results are discussed in the perspectives of neophobia, saccharin aversion, amnestic agents and the character as well as gradients of amnesia produced.
Mixed-species flocks (MSFs) serve important roles in bird communities, especially in tropical forests. Although structure of mixed-species bird flocks and its benefits has been intensively studied globally, the foraging plasticity of a species when joining MSFs has rarely been evaluated. The present study examines foraging strategies of the Rufous-crowned Babbler (Malacopteron magnum), Chestnut-winged Babbler (Cyanoderma erythropterum) and Black-naped Monarch (Hypothymis azurea) when participating in MSFs in the Krau Wildlife Reserve, central Peninsular Malaysia. These species exhibit active foraging shifts in utilisation of vertical strata, foraging substrate, attack manoeuvres and foliage density, when foraging in MSFs, compared to when foraging outside MSFs. While the Rufous-crowned Babbler and Chestnut-winged Babbler commonly used gleaning and stretching (to completely extend the legs or neck to reach the food items) manoeuvres when foraging outside MSFs, respectively, they adopted probing manoeuvre and frequently used higher strata upon joining MSFs. The Chestnut-winged Babbler tended to forage on the underside of leaves and the Black-naped Monarch frequently utilised branches when joining MSFs, while they exclusively used aerial leaf litter and live green leaves, respectively, when foraging with conspecifics. The monarch also adopted the hovering manoeuvre and frequently foraged within denser foliage cover when joining MSFs. This study demonstrated that flock members exhibits foraging plasticity either through an expansion or active shift in foraging niches when participating in MSFs, thus suggesting the occurrence of possible foraging improvement and/or reductions in predation risk.
Niche theory suggests that sympatric species reduce interspecific competition through segregation of shared resources by adopting different attack manoeuvres. However, the fact that flycatcher-like bird species exclusively use the sally manoeuvre may thus challenge this view. We studied the foraging ecology of three flycatcher-like species (i.e. Paradise-flycatcher Terpsiphone sp., Black-naped Monarch Hypothymis azurea, and Rufous-winged Philentoma Philentoma pyrhoptera) in the Krau Wildlife Reserve in central Peninsular Malaysia. We investigated foraging preferences of each bird species and the potential niche partitioning via spatial or behavioural segregation. Foraging substrate was important parameter that effectively divided paradise-flycatcher from Black-naped Monarch and Rufous-winged Philentoma, where monarch and philentoma foraged mainly on live green leaves, while paradise-flycatcher foraged on the air. They also exhibited different foraging height preferences. Paradise-flycatcher, for instance, preferred the highest studied strata, while Black-naped Monarch foraged mostly in lower strata, and Rufous-winged Philentoma made use of the lowest strata. This study indicates that niche segregation occurs among sympatric species through foraging substrate and attack manoeuvres selection.
With the rapid growth of agricultural areas globally, forest birds increasingly encounter fragmented landscapes in which forest patches are surrounded by an agricultural plantation matrix, yet how birds respond behaviourally to this fragmentation is poorly understood. Information on microhabitat requirements of birds is scarce, but nevertheless essential to predicting adaptation of bird species to the patchy landscapes. We investigated foraging patterns of three tropical insectivorous birds, Green Iora Aegithina viridissima, Pin-striped Tit-Babbler Macronus gularis and Chestnut-winged Babbler Cyanoderma erythropterum, to determine whether they vary in foraging methods in different forest patches. Our study area encompassed old-logged lowland forest; one continuous forest and three forest patches. Observations were performed for 15 days every month for a period of 13 months. Information on foraging height, substrate, attack manoeuvres, and foliage density was collected independently for each foraging bird individual. All three species used different foraging substrates and attack manoeuvres in different habitat types. The Green Iora frequently used lower strata when foraging in forest patches as opposed to continuous forest, while the Pin-striped Tit-Babbler tended to forage in more dense vegetation in patches. Only Chestnut-winged Babbler displayed complete foraging plasticity across all study parameters. Different habitat features (e.g., edges, microclimates) between continuous forest and forest patches significantly influenced the foraging strategies of the study species. These changes in foraging strategies suggest that some Malaysian forest birds (e.g. generalist species) can respond behaviourally to fragmentation and habitat loss. Although continuous forest has critically important characteristics that need to be conserved, remnant forest patches are also important as ecological movement corridors and foraging grounds for birds.
Some ants display rescue behaviour, which is performed by nearby nestmates and directed at individuals in danger. Here, using several ant species, we demonstrate that rescue behaviour expression matches predicted occurrences based on certain aspects of species' ecological niches. Rescue occurred in sand-dwelling ants exposed both to co-occurring antlion larvae, representing the threat of being captured by a predator, and to nest cave-ins, representing the threat of being trapped in a collapsed nest chamber. Rescue also occurred in forest groundcover ants exposed to certain entrapment situations. However, rescue never occurred in species associated with open plains, which nest in hardened soils and forage largely on herbaceous plants, or in ants living in close mutualistic relationships with their host plants. In addition, because we tested each species in two types of tests, antlion larva capture tests and artificial entrapment tests, we highlight the importance of accounting for test context in studying rescue behaviour expression.
This study was conducted to determine the senses that facilitate prey detection in the marble goby (Oxyeleotris marmorata) larvae. The ingestion ratios of live (generate chemical and mechanical stimuli) or frozen Artemia nauplii (generate chemical but no mechanical stimuli) by the intact or free neuromast (mechanoreceptor)-ablated O. marmorata larvae (11 mg/L streptomycin treatment before feeding) under the light or dark (fish vision was obstructed) condition were examined. Vision, mechano-, and chemoreceptions were all found to be essential in prey detection of the O. marmorata larvae. Prey movement has a significant influence as a visual stimuli on the O. marmorata larval feeding as the Artemia nauplii ingestion ratio was approximately 40% higher with significant (p = 0.001, d = 3.0), when the intact larvae were fed with the live (78.1 ± 1.5%), rather than the frozen (40.9 ± 2.8%) Artemia nauplii, under the light condition. This result was assured when no significant difference (p = 0.572, d = 0.2) was found between the ingestion ratios of frozen Artemia nauplii by the intact O. marmorata larvae under light and dark conditions. These findings demonstrate that prey detection in the O. marmorata larvae was facilitated by multi-modal senses, allowing O. marmorata larvae to survive in their natural habitats.